Anchimeric Assistance by and Migration of the Vinyl Group in Reactions of Sterically Hindered Organosilicon Compounds of the Type $(Me_3Si)_2C(SiMe_2CH=CH_2)(SiR_2X)$

G. Adefikayo Ayoko and Colin Eaborn *

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J

The compound VsiSiMe₂I [Vsi = $(Me_3Si)_2C(SiMe_2CH=CH_2)$] (1) is very similar in reactivity to $(Me_3-Si)_3CSiMe_2$ I (2) in reactions with methanol and with alkali-metal salts in MeOH or MeCN, but (1) is much the more reactive towards electrophiles which induce rate-determining ionization of the Si–I bond, *viz.* CF₃CH₂OH (the factor *f* is >500), CF₃CO₂H (*f* >1 800), AgBF₄ in CH₂Cl₂ (*f ca.* 150), or AgSCN in CH₂Cl₂ (*f* >500). The large differences are attributed to anchimeric assistance by the γ -vinyl group to the leaving I⁻ under the influence of the electrophile, leading to formation of a 1,3 vinyl-bridged cation. In accord with this, reactions of VsiSiEt₂I with AgBF₄ or AgO₂CCF₃ in CH₂Cl₂ (give *ca.* 1:2 mixtures of unrearranged and rearranged products, VsiSiEt₂Y and (Me₃Si)₂C(SiEt₂CH=CH₂)(SiMe₂Y) (Y = F or O₂CCF₃). Anchimeric assistance by the γ -vinyl group. The chloride VsiSiEt₂CI reacts with AgO₃SCF₃ in CH₂Cl₂ by loss of the vinyl group (with anchimeric assistance by the γ -CI atom), apparently to give a chlorine-bridged cation, and hence a mixture of the unrearranged (Me₃Si)₂C(SiEt₂CI)(SiMe₂O₃SCF₃) and the rearranged (Me₃Si)₂C(SiEt₂CI)(SiMe₂O₃SCF₃) (SiMe₂CI).

Reactions of compounds of the type $TsiSiR_2I [Tsi = (Me_3Si)_3$ -C] with various electrophiles, such as Ag¹ or Hg¹¹ salts, ICl, and CF₃CO₂H, are thought to involve rate-determining formation of bridged cations of type (I), which can be attacked by a nucleophile Y⁻ at either the α - or the γ -silicon centre, so that rearranged products of the type (Me₃Si)₂C(SiR₂Me)(SiMe₂Y) can be formed exclusively (e.g. R = Ph) or along with the unrearranged TsiSiR₂Y (e.g. R = Et).^{1.2} In contrast, solvolyses of the compounds TsiSiR₂I in MeOH or aqueous organic media do not result in rearrangement, and so do not go through the bridged cations.³ When the much more powerful bridging group OMe is present on the γ -Si, as in the compounds $(Me_3Si)_2C(SiMe_2OMe)(SiR_2X)$, the reactivity towards electrophiles is greatly enhanced; e.g. alcoholyses of (Me₃Si)₂-C(SiMe₂OMe)(SiMe₂Cl) are much faster than those of TsiSiMe₂Cl (the factor is $> 10^6$ in methanolysis⁴) and involve rate-determining ionization, and in keeping with this the reaction of (Me₃Si)₂C(SiMe₂OMe)(SiPh₂Cl) with EtOH gives exclusively the rearranged (Me₃Si)₂C(SiMe₂OEt)(SiPh₂OMe).⁵

The bridging in the ions of type (I) bears some analogy to that in the dimers formed by triorganoaluminium compounds,² Si⁺ being isoelectronic with Al, and since the vinyl group bridges more effectively than the Me group in such dimers⁶ it seemed likely that the vinyl-bridged ions (II) would be more stable than the methyl-bridged ions (I), and thus that compounds of the type VsiSiMe₂X would be more reactive than the corresponding TsiSiMe₂X species, and that 1,3-migration of the vinyl group would occur. This proved to be the case, but the effects of the vinyl group were much larger than we had expected. (A preliminary publication has appeared.⁷)

VsiSiMe ₂ I	TsiSiMe ₂ I		
(1)	(2)		
$Vsi = (Me_3Si)_2C(SiMe_2CH=CH_2)$	Tsi = (Me ₃ Si) ₃ C		

Results and Discussion

Preparation of Compounds of the Type VsiSiRR'X.—The chloride VsiCl was first made by treatment of $(Me_3Si)_2C(Cl)Li$ with $Me_2Si(CH=CH_2)Cl$. Metallation of the VsiCl with BuLi in Et₂O-THF-pentane (THF = tetrahydrofuran) at -100 °C gave VsiLi, which reacted satisfactorily with a range of organosilicon chlorides to give products of the type VsiSiRR'X (X = H, Cl, or Me) as shown in Table 1.

It is noteworthy that although the VsiLi coupled normally with Ph₂SiHCl and PhMeSiHCl, no reaction was observed with the more sterically hindered Ph₂SiCl₂ and PhMeSiCl₂, and the product isolated after treatment of the VsiLi solution with these dichlorides was VsiBuⁿ, formed (during the warming to room temperature) by reaction of the VsiLi with the BuⁿCl produced in the metallation. The related reagent TsiLi {which actually 8 has the structure $[Li(THF)_4][Li(Tsi)_7]$ likewise coupled satisfactorily with all the silicon halide substrates listed in Table 1 (and also with $Ph_2S(F_2)$), but gave only a very low yield with Ph₂SiCl₂.⁹ In contrast the reagent (PhMe₂Si)₃CLi (denoted by TpsiLi), which is a monomeric species in which there is a strong intramolecular interaction between one of the Ph groups and the lithium,¹⁰ does not react with Me₃SiCl, Et₂SiCl₂, Ph₂SiHCl, PhMeSiHCl, or Ph_2SiF_2 , though it does react normally with the less hindered Me₂SiHCl.¹¹ It is thus of interest to consider whether VsiLi resembles TsiLi or TpsiLi in structure.

An attempt to determine the crystal structure of VsiLi was unsuccessful, apparently because of extensive disorder in the crystal. We observed, however, that, unlike TsiLi, VsiLi is readily soluble in hydrocarbon solvents, and moreover in $[^{2}H_{8}]$ toluene gives only one ⁷Li n.m.r. signal, at $\delta - 0.086$ p.p.m., whereas two would be expected for a structure like that of TsiLi. [The latter compound also, in fact, gave only one

Table 1. Reactions of VsiLi with organosilicon chlorides

Chloride	Product	Yield/%
Me ₂ SiHCl	VsiSiMe, H	67
Me ₂ SiCl ₂	VsiSiMe ₂ Cl	66
Me ₃ SiCl	VsiSiMe ₃	88
Et ₂ SiCl ₂	VsiSiEt ₂ Cl	54
Et ₂ SiHCl	VsiSiEt ₂ H	65
Ph ₂ SiHCl	VsiSiPh ₂ H	58
PhMeSiHCl	VsiSiPhMeH	69
Ph ₂ SiCl ₂	VsiBu ^{n a}	60
PhMeSiCl ₂	VsiBu ^{n a}	
" From Bu ⁿ Cl formed from (Me ₃ Si) ₂ C(Cl)(SiMe ₂ C	CH=CH ₂) and Bu ⁿ Li.

detectable signal in $[^2H_8]$ toluene, that from the cation (at δ +0.88 p.p.m.), but this was because of its low solubility in that solvent, and in THF there was a signal from the anion (at δ + 3.1 p.p.m.¹²).] It thus seems likely that VsiLi is a non-ionic, probably monomeric species, and that there is probably some interaction between the lithium and the vinyl group analogous to that involving the Ph groups in TpsiLi, since otherwise there seems no reason why the type of structure found for TsiLi should not be adopted. The higher reactivity of VsiLi than of TpsiLi could then perhaps be attributed to smaller steric shielding of the Li centre in the vinyl compound. [It is attractive to attribute it primarily to steric shielding by all three Ph groups in TpsiLi, but VsiLi is also somewhat more reactive than the monophenyl analogue (Me₃Si)₂C(SiMe₂Ph)Li, which reacts with Et₂SiHCl but not with Et₂SiCl₂.] The integrated ¹H n.m.r. spectrum of a solution of VsiLi in $[^{2}H_{8}]$ toluene indicated that there are two THF molecules per Vsi group, which matches the findings for TsiLi but contrasts with those for TpsiLi, which has only one THF per Tpsi group, but this can reasonably be associated with the smaller steric hindrance in VsiLi towards coordination of two THF molecules to the carbon-bound lithium to give the four-co-ordination state preferred by Li. The probable structure of VsiLi made in THF is thus that shown in (III).

The compound VsiSiMe₂H was the starting point for a range of other derivatives. Thus it reacted with one molar equivalent of I₂ in CCl₄ at room temperature in the presence of an excess of $Me_3SiCH=CH_2$ to give the iodide $VsiSiMe_2I$ (1). [The Me₃SiCH=CH₂ is used to take-up the HI, which otherwise, with assistance from the y-I, causes cleavage of the Si-vinyl bond of (1) to give some $(Me_3Si)_2C(SiMe_2I)_2$.] The diethyl compound VsiSiEt₂H likewise gave VsiSiEt₂I. In contrast, treatment of VsiSiPh₂H with I₂ in CCl₄ for 4 days at room temperature gave a product whose ¹H n.m.r. spectrum showed no signals from vinyl protons but did show a signal for the SiH proton; it appears that the I₂ preferentially cleaves the Si-vinyl bonds, and this is not altogether surprising since on the one hand the related hydride TsiSiPh₂H does not react with 1 molar equivalent of I₂ in CCl₄ during several days under reflux, and on the other the related vinyl compound TsiSiMe₂CH=CH₂ reacts under such conditions to give TsiSiMe₂I.¹³

An attempt to make (1) by treatment with one molar equivalent of ICl in CCl_4 was unsuccessful; after 30 min at room temperature the ¹H n.m.r. spectrum indicated that (1), the

dichloride $(Me_3Si)_2C(SiMe_2Cl)_2$, and unchanged VsiSiMe_2H were present in a 2:1:2 ratio. We think it likely that the iodide (1) is initially produced, and then the γ -I assists (*cf.* ref. 4) the cleavage of the Si–vinyl bond to give $(Me_3Si)_2C(SiMe_2Cl)-(SiMe_2I)$, which then reacts with the ICl with assistance by the γ -Cl to give the dichloride. (The reactions of TsiSiR_2I with ICl, to give rearranged and/or unrearranged chloride, are known to involve formation of an intermediate methyl-bridged cation,^{1.14} and thus assistance by γ -Cl would be expected.) However, it is possible to write other reasonable sequences involving anchimerically assisted processes after introduction of the first halide ligand.

Reaction of VsiSiMe₂H at -20 °C with one molar equivalent of Br₂ in CCl₄ containing an excess of Me₃SiCH=CH₂ gave, after work-up, exclusively VsiSiMe₂Br. In contrast, VsiSiPh₂H under similar conditions reacted by cleavage of the Si-vinyl bond, the Si-H bond remaining intact.

Reactions of $VsiSiMe_2X$ (X = Cl, Br, or I) with Alkali-metal Salts.—Treatment of the iodide (1) with an excess of CsF, NaN_3 , KSCN, or KOCN in MeCN gave the corresponding $VsiSiMe_2Y$ compounds with Y = F, N_3 , NCS, or NCO, respectively.

The relative reactivities of the iodides (1) and (2) were assessed in some representative reactions with the alkali metal salts in MeCN or MeOH. Thus a solution of (1) (0.125 mmol) and KSCN (0.50 mmol) (*i.e.* 0.05M) in MeCN was kept at 60 °C and the reaction was monitored by the removal of samples at appropriate times and the determination of the relative heights of the ¹H n.m.r. signals from the Me₃Si protons of (1) and the product VsiSiMe₂NCS. A satisfactory pseudo-first-order plot was obtained up to 80% completion of the reaction, and the half-life was *ca*. 61 min. When 1.00 and 2.00 mmol of KSCN were present the half-lives were *ca*. 30 and 15.5 min, respectively, showing that the reaction is of first-order with respect to the salt, and so second order overall. In the reaction of (2) with KSCN (0.50 mmol) under similar conditions the half-life was *ca*. 66 min, *i.e.* (1) is *ca*. 1.1 times as reactive as (2) in this reaction.

In a similar procedure but with (1) or (2) (0.125 mmol) and KOCN (2.0 mmol) in MeCN at 60 °C the half-life was ca. 18 h for (1) and 21 h for (2), indicating that in this case (1) is ca. 1.2 times the more reactive. Under similar conditions but with NaN₃ (2.0 mmol) (little of which dissolved), the half-life was ca. 11 h for (1) and 13 h for (2), indicating that (1) is ca. 1.2 times the more reactive.

Comparisons of the reactivities in MeOH were made with a solution of (1) or (2) (0.023 mmol) (initially dissolved in ca. 0.01 cm^3 of CCl_4) in an 0.25M solution of the relevant salt (0.25 mmol) in MeOH (1 cm³) contained in a capped n.m.r. tube which was kept at 60 $^{\circ}$ C. The reaction was monitored by ¹H n.m.r. spectroscopy as before. With NaN₃ the products seemed from the ¹H n.m.r. spectrum to be exclusively the corresponding azides $VsiSiMe_2N_3$ and $TsiSiMe_2N_3$, and the half-lives were ca. 5.5 h for (1) and ca. 6.5 h for (2); i.e. (1) is ca. 1.2 times the more reactive. In the reaction with CsF, (1) appeared from the ${}^{1}H$ spectrum to give VsiSiMe₂F and VsiSiMe₂OMe in ca. 10:1 ratio; the half-life for the disappearance of (1) was ca. 7 h, and that for conversion into $VsiSiMe_2F$ would be ca. 7.7 h. With (2), TsiSiMe₂F and TsiSiMe₂OMe appeared to be formed in ca. 18:1 ratio, with a half-life of ca. 9 h for the overall disappearance of (2) and thus one of ca. 10 h for conversion into TsiSiMe₂F, so that (1) again appears to be ca. 1.3 times as reactive as (2). [We should note that more detailed studies of reactions of (2) with CsF in MeOH, under conditions similar to those used here, have revealed that small amounts of the other products are also formed,¹⁵ and this is presumably also the case for the reaction of (1), but this does not affect our conclusion that (1) and (2) have rather similar reactivities in the main reactions.]

Table 2. Rate constants for reaction of (1) and $VsiSiMe_2O_3SCF_3$ with MeOH or H_2O -MeOH

Medium	$T/^{\circ}C$	$10^7 \ k/s^{-1 \ a}$	$10^7 \ k'/s^{-1 \ b}$	Notes
МеОН	49	7.0	7.0	с
0.05м-NaOMe-MeOH		7.8	7.8	с
0.10м-NaOMe-MeOH		8.8	8.1	d
0.20м-NaOMe-MeOH		9.7	8.8	e
0.40м-NaOMe-MeOH		11.0	9.8	f
MeOH	35	24		c
0.10м-NaOMe-MeOH		30		С
0.20м-NaOMe-MeOH		32		с
1% v/v H ₂ O-MeOH		123		g
	Medium MeOH 0.05M-NaOMe-MeOH 0.10M-NaOMe-MeOH 0.20M-NaOMe-MeOH 0.40M-NaOMe-MeOH MeOH 0.10M-NaOMe-MeOH 0.20M-NaOMe-MeOH 1% v/v H ₂ O-MeOH	Medium T/°C MeOH 49 0.05M-NaOMe-MeOH 0.10M-NaOMe-MeOH 0.20M-NaOMe-MeOH 0.20M-NaOMe-MeOH 0.40M-NaOMe-MeOH 35 0.10M-NaOMe-MeOH 0.20M-NaOMe-MeOH 0.20M-NaOMe-MeOH 35 0.10M-NaOMe-MeOH 15 0.20M-NaOMe-MeOH 15 0.20M-NaOMe-MeOH 10/20M-NaOMe-MeOH	Medium $T/^{\circ}C$ $10^7 k/s^{-1 a}$ MeOH497.0 0.05 M-NaOMe-MeOH7.8 0.10 M-NaOMe-MeOH8.8 0.20 M-NaOMe-MeOH9.7 0.40 M-NaOMe-MeOH11.0MeOH35 0.10 M-NaOMe-MeOH30 0.20 M-NaOMe-MeOH32 1% v/v H ₂ O-MeOH123	Medium $T/^{\circ}C$ $10^{7} k/s^{-1a}$ $10^{7} k'/s^{-1b}$ MeOH497.07.0 0.05 M-NaOMe-MeOH7.87.8 0.10 M-NaOMe-MeOH8.88.1 0.20 M-NaOMe-MeOH9.78.8 0.40 M-NaOMe-MeOH11.09.8MeOH3524 0.10 M-NaOMe-MeOH30 0.20 M-NaOMe-MeOH32 1% v/v H ₂ O-MeOH123

^{*a*} Rate constant for disappearance of substrate. ^{*b*} Rate constant for conversion of (1) into VsiSiMe₂OMe. ^{*c*} Product exclusively VsiSiMe₂OMe. ^{*d*} Value of ratio, R, of VsiSiMe₂OMe to (Me₃Si)₂CH(SiMe₂OMe) in products was 6. ^{*c*} R = 4. ^{*f*} R = 2. ^{*g*} Product exclusively VsiSiMe₃OH.

Table 3. Half-lives, $t_{\frac{1}{2}}$, for hydrolysis of (1) and TsiSiMe₂I (2)^{*a*}

Medium	$T/^{\circ}\mathbf{C}$	<i>t</i> ¹ for (1)/min	$l_{\frac{1}{2}}$ for (2)/min
5% v/v H ₂ O–MeOH	60	885	1 225
0.10M-NaOH in 5% v/v H ₂ O-MeOH	60	870	
$2\% v/v H_2O-Me_2SO$	45	21	26
$2\% v/v H_2O-HCONMe_2$	60	9	19
2% v/v $H_2O-MeCN$	60	2 200	3 3 50
Products were VsiSiMe ₂ OH and TsiSiMe ₂ OH, respectively.			

In the reactions of the bromides $VsiSiMe_2Br$ and $TsiSiMe_2Br$ with CsF in MeOH under similar conditions the ratios of fluoride to methoxide products were *ca.* 12:1 and 17:1, respectively, and values of $t_{\frac{1}{2}}$ for the disappearance of the initial bromides were *ca.* 14 and 24 h, respectively, indicating that $VsiSiMe_2Br$ was *ca.* 1.7 times the more reactive. In the corresponding reactions of $VsiSiMe_2Cl$ and $TsiSiMe_2Cl$ the fluorides appeared to be the only products (but small amounts of other products would have escaped detection) and the values of $t_{\frac{1}{2}}$ were 29 and 35 h, respectively, indicating that $VsiSiMe_2Cl$ is *ca.* 1.2 times the more reactive, and that the chlorides are *ca.* 4 times less reactive than the corresponding iodides (1) and (2). The unusually small difference in reactivity between chlorides and iodides in this type of reaction has been commented on previously.¹⁶

Solvolysis of $VsiSiMe_2X$ (X = I or O_3SCF_3).—A solution of (1) in MeOH was kept at 49 °C, and the reaction was monitored by determining at intervals the relative heights of the signals from the Me_3Si groups of (1) and $VsiSiMe_2OMe$ in the ¹H spectrum. A good first-order plot was obtained up to >90% completion of the reaction, and a value of 7.0 \times 10⁻⁷ s⁻¹ was derived for the first-order rate constant (see Table 2), corresponding to a half-life of ca. 11.5 days. In a similar procedure with 0.05M-NaOMe present no other product could be detected from the ¹H n.m.r. spectrum, but with higher base concentrations significant amounts of the fragmentation product (Me₃Si)₂CH(SiMe₂OMe) were also formed, and from the heights of the relevant Me₃Si peaks the ratio of VsiSiMe₂OMe to the latter product were ca. 6:1, 4:1, and 2:1 with 0.10, 0.20, and 0.40M-NaOMe, respectively. First-order rate constants were derived for the overall disappearances of (1)and for its conversion into VsiSiMe₂OMe, as shown in Table 2, and it will be seen that the base has only a small effect on the latter rate constant, as was previously observed for the corresponding reaction of (2).¹⁷ [Again more careful analysis has shown that (2) gives small amounts of other by-products under these conditions,¹⁵ and no doubt (1) does also, but this would have no significant effect on the present discussion.]

The rate constant derived similarly for reaction of (2) with MeOH alone under identical conditions was $ca. 5.6 \times 10^{-7} \text{ s}^{-1}$

(half-life ca. 14 days), and so once again (1) is ca. 1.25 times as reactive as (2).

The rate of reaction of the trifluoromethanesulphonate VsiSiMe₂O₃SCF₃ with MeOH was determined at 35 °C by in situ monitoring of the ¹H n.m.r. spectrum. The conversion into VsiSiMe₂OMe gave a good first-order plot and the half-life was ca. 50 min. Under comparable conditions TsiSiMe₂O₃SCF₃ was shown previously to have the same approximate half-life,¹ and so once again the replacement of an Me by a vinyl group has little, if any, effect on the reactivity. The presence of base has a somewhat larger influence than in the methanolysis of the iodide (1) (see Table 2) [the same feature was noted previously in methanolysis of $TsiSiMe_2O_3SCF_3^{18}$ and (2)¹⁷], but the effect is still much too small to suggest that the reaction in the absence of base has an S_N^2 type of mechanism. The presence of 1 vol % of water in MeOH resulted in a 5-fold increase in rate, and the product appeared to be exclusively the hydroxide VsiSiMe₂OH; a similar sensitivity to the presence of water was noted previously for the reactions of TsiSiMe₂O₃SCF₃¹⁸ and TsiSi $Me_2OClO_3^{17}$ with MeOH.

Similar procedures were used to determine the half-lives for reactions of (1) and (2) with water in organic media (to give exclusively the corresponding hydroxides) (see Table 3). The features are: (i) (1) is (a. 1.2–2.0 times as reactive as (2) in the reactions; (ii) the presence of 0.1M-NaOH has little effect on the rate of reaction of (1) with 5% v/v H₂O-MeOH, indicating again that the hydrolysis is not an $S_N 2$ process (cf. ref. 16), and (iii) water in Me₂SO is the most effective medium for the hydrolysis. (Note that the H₂O-Me₂SO solutions were used at 45 °C.)

When a solution of (1) (initially dissolved in a little CCl_4) in CF_3CH_2OH in an n.m.r. tube was kept at 50 °C, monitoring of the ¹H n.m.r. spectrum in the usual way indicated that (1) was undergoing conversion into the bis(trifluoroethoxide) $(Me_3Si)_2C(SiMe_2OCH_2CF_3)_2$ (which was subsequently isolated for confirmation of its identity), and no signals from the intermediate VsiSiMe_2OCH_2CF₃ were observed. The half-life for the conversion was *ca.* 2.5 h. When the procedure was repeated but with one molar equivalent of Et_3N present to neutralize the liberated HI, the product was exclusively VsiSiMe₂OCH₂CF₃, and the half-life was *ca.* 2.4 h, *i.e.* not significantly different. In contrast no reaction was observed when a solution of (2) in CF₃CH₂OH was kept at 50 °C for 5 days, indicating that (1) is at least 500 times as reactive as (2) under these conditions. It appears that in CF₃CH₂OH, which provides markedly more electrophilic assistance than MeOH to the leaving of I⁻, the anchimeric assistance by the vinyl group is sufficient to induce quite ready (rate-determining) ionization of (1).

As expected, (1) reacted still more rapidly with the even more electrophilic solvent CF₃CO₂H. Monitoring of the reaction at 50 °C showed that after 5 min ca. 35% of (1) had been converted into a 1:1.3 mixture of the monotrifluoroacetate VsiSiMe₂O₂CCF₃ and the bistrifluoroacetate (Me₃Si)₂C(Si- $Me_2O_2CCF_3)_2$; after 15 min ca. 80% of (1) had been converted into these products in a ca. 1:2 ratio, and after 50 min only the bistrifluoroacetate was present; the time for disappearance of 50% of (1) was ca. 8 min. Since the monotrifluoroacetate VsiSiMe₂O₂CCF₃ was found to react only slowly with CF_3CO_2H under these conditions, it seemed likely that once again the cleavage of the Si-vinyl bond was being catalysed by the HI generated in the initial reaction. This was confirmed by repeating the reaction in the presence of 1 molar equivalent of Et_3N , when the half-life was again *ca*. 8 min, but the product was exclusively VsiSiMe₂O₂CCF₃. The reaction of (2) with CF₃-CO₂H at 50 °C was found to have a half-life of ca. 235 h, and so it seems that (1) is ca. 1 800 times as reactive as (2) in this $S_{\rm N}$ 1 solvolysis.

Reaction with Silver Salts.-Treatment of (1) with the silver salts AgY in CH₂Cl₂ gave the compounds VsiSiMe₂Y with Y = O_2CMe , O_2CPh , O_2CCF_3 , $O_3SC_6H_4Me$ -p, NCS, or OCN (see later). Comparisons of the reactivities of (1) and (2) in some such reactions were made as follows. (a) A mixture of (1) (0.25 mmol), (2) (0.25 mmol), and $AgO_3SC_6H_4Me$ -p (0.25 mmol) in CH_2Cl_2 (20 cm³) was stirred at room temperature and samples were removed at intervals for determination of the ¹H n.m.r. spectrum. This showed that ca. 40, 60, and 85% of (1) had reacted after 3, 13, and 27 min, respectively, and after 45 min only $VsiSiMe_2O_3SC_6H_4Me$ -p and unchanged (2) were present in solution; the half-life for conversion of (1) into the toluene-psulphonate was thus ca. 7 min. When the procedure was repeated but without (1) present, $t_{\frac{1}{2}}$ for conversion of (2) into TsiSiMe₂O₃SC₆H₄Me-p was ca. 15 h, and so (1) is ca. 130 times as reactive as (2) under these conditions.

(b) When a mixture of (1) (0.25 mmol) and AgSCN (0.25 mmol) in CH₂Cl₂ (20 cm³) was stirred at room temperature, monitoring as in (a) showed that formation of VsiSiMe₂NCS was complete within 1.5 h. (The probability that VsiSiMe₂SCN was formed as an intermediate is discussed later.) In contrast, all attempts to bring (2) into reaction with AgSCN have been unsuccessful.¹⁹ Consistently, when a mixture of (1) (0.25 mmol), (2) (0.25 mmol), and AgSCN (0.50 mmol) was stirred at room temperature, *ca.* 25, 50, and 85% of (1) had reacted after 8, 20, and 55 min, respectively. After 48 h only VsiSiMe₂NCS and unchanged (2) were present in solution, suggesting that (1) is probably at least 500 times as reactive as (2) under these conditions.

(c) The reaction of (1) (0.25 mmol) with AgO_2CMe (0.25 mmol) in CH_2Cl_2 (20 cm³) was half complete in ca. 14 min. The corresponding half-life for (2) under similar conditions was ca. 33 h, indicating that (1) is ca. 140 times the more reactive.

Because of the assistance by the vinyl group, the bromide V_{siSiMe_2Br} (0.25 mmol) reacted fairly readily with AgO₃SC₆-H₄Me-*p* (0.25 mmol) in CH₂Cl₂ (20 cm³) at room temperature, formation of $V_{siSiMe_2O_3SC_6H_4Me-p}$ being complete within 4 h. No detectable reaction occurred in 48 h when TsiSiMe₂Br was used under the same conditions, indicating that this bromide

is >300 times less reactive than VsiSiMe₂Br. The chloride VsiSiMe₂Cl underwent no detectable reaction with AgO₃SC₆-H₄Me-*p* in CH₂Cl₂ in 96 h at room temperature, whereas the reaction of the methoxy compound (Me₃Si)₂C(SiMe₂OMe)-(SiMe₂Cl) is complete within 4 h under these conditions.²⁰

The migration of the vinyl group was demonstrated by using VsiSiEt₂I in reaction with AgBF₄ and with AgO₂CCF₃, these salts being chosen because ¹⁹F n.m.r. spectroscopy assists in the identification of the products and determination of the composition of mixtures of them. When VsiSiEt₂I was treated with AgBF₄ in Et₂O or CH₂Cl₂ for 30 min at room temperature, linked g.l.c.-mass spectrometry indicated that three products had been formed in a 3:6:1 ratio, the first two having mass spectra consistent with the expected monofluorides, and the third a mass spectrum revealing it to be a difluoride, such as (Me₃-Si)₂C(SiEt₂F)(SiMe₂F). The ¹H and ¹⁹F n.m.r. spectra were likewise consistent with the presence of three products in a 3:6:1 ratio, and from the spectra these were identified as the unrearranged VsiSiEt₂F, the rearranged (Me₃Si)₂C(SiEt₂CH= CH_2)(SiMe₂F), and the diffuoride (Me₃Si)₂C(SiEt₂F)(SiMe₂F), respectively. The ²⁹Si n.m.r. spectrum was also consistent with the presence of these three products. The possibility that the rearranged product might have been (Me₃Si)C(SiMe₂CH= CH_2)(SiEt₂Me)(SiMe₂F), formed by migration of a γ -Me rather than a γ -vinyl group, was ruled out because the 360 Mz ¹H and ²⁹Si n.m.r. spectra gave no indicaton of either a unique Me group or of the two sets of SiMe₂CH=CH₂ signals which would be expected if that isomer were present along with the unrearranged (Me₃Si)₂C(SiMe₂CH=CH₂)(SiEt₂F). Furthermore the integrated signals from the SiMe₂CH=CH₂ and SiMe₂F protons in the ¹H n.m.r. spectrum were in a 1:2 ratio, showing that they could not come from (Me₃Si)C(SiMe₂CH= CH₂)(SiEt₂Me)(SiMe₂F), but consistent with the presence of VsiSiEt₂F and (Me₃Si)₂C(SiEt₂CH=CH₂)(SiMe₂F) in a 1:2 ratio. The formation of the difluoride (Me₃Si)₂C(SiMe₂F)-(SiEt₂F) can be attributed to anchimeric assistance by the γ -F in either or both of the monofluorides to cleavage of the Si-vinyl bond by the electrophile.

When VsiSiEt₂I was treated with AgO₂CCF₃ in Et₂O, the product mixture appeared from the ¹H n.m.r. spectrum to contain only the unrearranged VsiSiEt₂O₂CCF₃ and the rearranged (Me₃Si)₂C(SiEt₂CH=CH₂)(SiMe₂O₂CCF₃), in a 1:2 ratio, but ¹⁹F n.m.r. spectroscopy, while confirming that these products were indeed present in that ratio, revealed that some (<10%) of the bis(trifluoroacetate) (Me₃Si)₂C(SiMe₂-O₂CCF₃)₂ was also present; its formation can be accounted for in the same way as that of the corresponding difluoride in the reaction involving AgBF₄. [The integrated signals from the SiMe₂CH=CH₂ and SiMe₂O₂CCF₃ protons were again in a 1:2 ratio, confirming that the rearranged isomer was not (Me₃Si)-C(SiMe₂CH=CH₂)(SiEt₂Me)(SiMe₂O₂CCF₃).] Linked g.l.c.mass spectrometry gave only one main peak, with a mass spectrum consistent with VsiSiEt₂O₂CCF₃ or its isomers.

No reaction occurred when a solution of VsiSiMe₂Cl in CH_2Cl_2 was stirred with AgO₃SCF₃ at room temperature for 96 h, but a reaction, of an unexpected type, did take place when VsiSiEt₂Cl was treated with AgO₃SCF₃ in the same solvent under reflux. After 4 h the ¹H n.m.r. spectrum showed that some starting material remained, and linked g.l.c.mass spectrometry gave two peaks in a *ca*. 35:65 ratio, one corresponding to that material and the other giving a mass spectrum consistent with a species in which a vinyl had been replaced by an O₃SCF₃ group. The ¹⁹F n.m.r. spectrum showed that there were, in fact, two such species present, in a 40:60 ratio, and these can reasonably be assumed to be the unrearranged (Me₃Si)₂C(SiHe₂Cl)(SiHe₂O₃SCF₃), respectively. Apparently the anchimeric assistance by the γ -vinyl group to the leaving of Cl⁻ is not as effective as that by the γ -Cl to the leaving of CH₂=CH⁻, and formation of a chlorine-bridged species leads to rearranged and unrearranged products in the same ratio as that from the corresponding vinyl-bridged cation. Anchimeric assistance by and migration of chlorine have been observed in related compounds containing more familiar leaving groups.^{4,21}. Similar loss of vinyl group occured when VsiSiEt₂Cl was treated with AgBF₄ in CH₂Cl₂; the ¹H n.m.r. spectrum of the solid product showed no signals from vinyl protons, and the mass spectrum was consistent with the solid being (Me₃Si)₂C(SiMe₂F)(SiEt₂Cl) and/or (Me₃Si)₂C(Si-Me₂Cl)(SiEt₂F).

The product of the reaction of (1) with AgOCN in CH_2Cl_2 was the normal cyanate VsiSiMe₂OCN, whereas that from its reaction with KOCN in MeCN was the isocyanate VsiSi-Me₂NCO; analogous results were obtained previously with (2). The main differences in spectroscopic properties between the two isomers matched those between TsiSiMe₂OCN and TsiSi-Me₂NCO;²² thus the cyanate gave a v(SiOCN) band in the i.r. at 2 220 and the isocyanate a v(SiNCO) band at 2 245 cm⁻¹, and $\delta_{\rm H}$ for the SiMe₂OCN protons was 0.67 and that for the SiMe₂NCO 0.48. The values of $\delta_{\rm C}$ and $\delta_{\rm Si}$ for the SiOCN group are identical with those for TsiSiMe₂OCN, *viz.* 109 and 38.1 p.p.m., respectively.²³ Some reactions of VsiSiMe₂OCN are discussed later.

We noted above that treatment of (1) with AgSCN in CH_2Cl_2 for 1.5 h gave exclusively the isothiocyanate VsiSiMe₂NCS. However, after 0.5 h the ¹H n.m.r. spectrum of the solution showed three signals in the SiMe₃ region, at δ 0.36, 0.30, and 0.26, in ca. 2:2:3 ratio. The first of these signals is attributable to (1) and the second to VsiSiMe₂NCS, which was the only compound present in the solution after 1.5 h. [The isolated product was identical to that obtained from (1) and KSCN in MeCN.] It is very likely that the signal at δ 0.26 was due to the normal thiocyanate, VsiSiMe₂SCN, which is formed initially and then isomerizes. The only normal silicon thiocyanate so far isolated is (Me₃Si)₂C(SiMe₂OMe)(SiMe₂SCN), obtained by reaction of (Me₃Si)₂C(SiMe₂OMe)(SiMe₂Cl) with AgSCN;¹⁹ in that case the greater anchimeric assistance induces very rapid formation of the normal thiocyanate, which can thus be isolated before it isomerizes.

Treatment of (1) with $AgO_3SC_6H_4Me_p$ in $H_2O-MeCN$ gave the expected hydroxide, $VsiSiMe_2OH$.

Anchimeric Assistance by the Vinvl Group.—It is evident from above results that the vinyl group provides strong anchimeric assistance to the departure of the halide ion in reactions of (1) with the electrophiles CF₃CH₂OH, CF₃CO₂H, and silver salts, and of VsiSiMe₂Br with the last of these, all reactions which involve formation of a bridged cation in the rate-determining step.^{1.2} In contrast, in reactions which do not involve formation of a (nucleophile-free) cation, viz. those with MeOH, water in organic media, and alkali metal salts in MeCN or MeOH, the reactivities of (1), and, in the cases examined, those of Vsi-SiMe₂Br and VsiSiMe₂O₃SC₆H₄Me-p are very similar to those of the corresponding TsiSiMe₂X compounds, as would be expected since the electronic and steric influences of a remote vinyl should not be appreciably different from those of an Me group. [It is noteworthy in this context that the reactivities of TsiSi(CH=CH₂)₂X compounds are very similar to those of the corresponding TsiSiMe₂X compounds over the whole spectrum of reactions involving the leaving of X.²⁴] The assistance by the vinyl group apppears to be smaller in reactions of (1) with silver salts than in those with CF_3CO_2H , and smaller for reactions with AgBF₄ than with the less reactive AgSCN, and this is in line with the likelihood that the need for assistance will be smaller the more powerful the electrophile. (The effect should be larger for reactions with CF₃CH₂OH than with CF₃CO₂H, but the available results do not give information on this point.) The anchimeric assistance by a γ -vinyl, while large, is markedly smaller than that by a γ -OMe group.

We assume that the bridging by the vinyl group involves only one carbon atom as in (II), *i.e.* is analogous to that in vinyl bridges between Al centres. Such bridging, but 1,2 (to form a three-membered ring) rather than 1,3, is believed to provide anchimeric assistance to formation of some carbocations (of the simple homoallylic type in which there is stabilization by overlap of the *p* orbitals of the electron-deficient carbon with those of the *p* orbitals of the carbon atoms of the double bond), but more commonly there is direct interaction between the π orbitals of the double bond and the electron-deficient centre, with both carbon atoms of the double bond becoming partially bonded to that centre to give a homocyclopropenyl cation;²⁵ such interaction is postulated, for example, in the cation formed during solvolysis of CH₂=CH(CH₂)₂O₃SC₆H₄Me-*p* and related species.²⁶

The occurrence of the rearrangements we have observed is consistent with bridging as in (II), with the nucleophile $Y^$ preferentially attaching to the less hindered silicon centre, *viz.* that bearing two Me rather than that bearing two Et groups. The relative steric hindrance towards attack at the two centres should not be significantly different for (I) than for (II), and thus it could at first sight seem anomalous that in reactions involving the ion (I) roughly equal amounts of rearranged and unrearranged products were reported, whereas for reactions involving (II; R = Et) such products are in a 2:1 ratio, but in the case of reactions involving (I; R = Et) the ratios were subject to considerable uncertainty and, in addition, the more stable cation (II; R = Et) could be expected to be attacked more selectively than the less stable (I; R = Et).

Overall the results are consistent with a division of substitution reactions of highly sterically hindered compounds of the type under consideration into three types, viz.¹⁶ (a) direct bimolecular substitutions (possibly involving five-co-ordinate intermediates), such as those in reactions of (1) and (2) with alkali metal salts and in the methanolysis of compounds of the type TsiSiPhHX with X = Br or ONO₂, which are markedly accelerated by NaOMe; (b) reactions with electrophiles such as silver salts or CF₃CO₂H, and, if there is sufficient anchimeric assistance, with CF₃CH₂OH or sometimes [e.g. in the case of $(Me_3Si)_2C(SiMe_2OMe)(SiMe_2Cl)]$ even with MeOH, which involve rate-determining ionization to give bridged cations; and (c) reactions of species such as (1), (2), $TsiSiMe_2OCIO_3$, and TsiSiRHI (R = Ph or Me) with MeOH, which are not significantly accelerated by the presence of NaOMe but which are much faster than the reactions with the more electrophilic but less nucleophilic CF₃CH₂OH, and so are assumed to have an intermediate type of mechanism. Especially significant in the present work is the observation that in contrast with (2), but like (Me₃Si)₂C(SiMe₂OMe)(SiMe₂Cl), (1) reacts much more readily with CF₃CH₂OH than with MeOH.

Miscellaneous Reactions of VsiSiMe₂X Compounds.—Reactions of VsiSiMe₂X (X = OMe, OH, O₂CCMe, O₂CCF₃, or H) with CF₃CO₂H. When a solution of VsiSiMe₂OMe was made up in CF₃CO₂H at room temperature and the ¹H n.m.r. spectrum recorded as quickly as possible (within ca. 1 min) the spectrum showed that complete conversion into (Me₃Si)₂-C(SiMe₂O₂CCF₃)₂ had occurred. When the procedure was repeated with 4:1 v/v CCl₄-CF₃CO₂H as solvent, the n.m.r. spectrum after 2 min at 35 °C indicated that only (Me₃Si)₂C(SiMe₂OMe)(SiMe₂O₂CCF₃) was present, but after 45 min complete conversion into (Me₃Si)₂C(SiMe₂O₂CCF₃)₂ had occurred. It appears that the strong anchimeric assistance by the γ -OMe group results in rapid cleavage of the Si-vinyl bond by CF₃CO₂H (which is not surprising since cleavage even of an Si-Me bond occurs when TsiSiMe₂OMe is treated with CF₃CO₂H at room temperature²⁷). The subsequent loss of the OMe group, assisted by the γ -O₂CCF₃ group, is distinctly slower.

The hydroxide VsiSiMe₂OH reacted somewhat more slowly with CF₃CO₂H, but when a solution was made up at 35 °C the spectrum recorded within 1 min showed that some (Me₃Si)₂-C(SiMe₂OH)(SiMe₂O₂CCF₃) was present along with the VsiSiMe₂OH, and after 10 min these were present in a 3:7 ratio. After 1 h only (Me₃Si)₂C(SiMe₂O₂CCF₃)₂ was present. The anchimeric assistance by a γ -OH seems generally to be somewhat less powerful than that by a γ -OMe group.²⁸

When a solution of VsiSiMe₂O₂CMe in CF₃CO₂H was kept at 35 °C, the ¹H n.m.r. spectrum after 18 h indicated that the starting material and $(Me_3Si)_2C(SiMe_2O_2CMe)(SiMe_2O_2 CCF_3)$ were present in a 3:2 ratio, and after 6 days only $(Me_3Si)_2C(SiMe_2O_2CF_3)_2$ was present. Similarly with a solution of VsiSiMe₂O₂CPh in CF₃CO₂H at 35 °C, after 70 h about half of the starting material had been converted into $(Me_3-Si)_2C(SiMe_2O_2CPh)(SiMe_2O_2CCF_3)_2$ was present. It seems that under these conditions assistance by the O₂CR groups is markedly weaker than that by OMe or OH, and is weaker for R = Ph than for R = Me.

When a solution of VsiSiMe₂H was kept at 60 °C, complete conversion into VsiSiMe₂O₂CCF₃ took place within 1 h, *i.e.* there was no cleavage of the Si–vinyl bond.

Reactions of VsiSiMe₂OH and VsiSiMe₂OMe with NaOMe– MeOH. When a solution of VsiSiMe₂OH in 0.4M-NaOMe– MeOH was boiled under reflux for 2 h, 95% of the hydroxide underwent isomerization to $(Me_3Si)_2CH(SiMe_2OSiMe_2CH=$ CH₂). This is an example of a known type of rearrangement,²⁹ but it is of interest that the CH₂=CHMe₂Si group migrates rather than one of the Me₃Si groups (though a small amount of product resulting from the latter type of migration would have escaped detection.)

When a solution of VsiSiMe₂OMe in 0.40M-NaOMe–MeOH was boiled under reflux for 72 h no detectable reaction took place. However, when a solution of (1) in 1.0M-NaOMe–MeOH was boiled under reflux for 24 h, linked g.l.c.-mass spectrometry revealed the presence of five components, two of which, from their mass spectra, were probably (Me₃Si)₂CH(SiMe₂OMe) and (Me₃Si)CH(SiMe₂CH=CH₂)(SiMe₂OMe), and another (*ca.* 20% of the total) the starting material VsiSiMe₂OMe. The (Me₃Si)₂CH(SiMe₂OMe) can be assumed to be formed in a fragmentation process of a known general type, involving the sila-alkene intermediate (Me₃Si)₂C=SiMe₂, though no detectable reaction took place when a solution of TsiSiMe₂OMe in 2M-NaOMe–MeOH was boiled under reflux for 24 h.³⁰

Treatment of VsiSiMe₂X (X = $O_3SC_6H_4Me$ -p, F, Cl, Br, NCO, or NCS) with MeOH. All these compounds were recovered unchanged after prolonged boiling (5–12 days) with MeOH.

Reactions of VsiSiMe₂OCN. When a solution of VsiSi-Me₂OCN in MeOH (carefully 'dried' but evidently still containing traces of water) was kept at 35 °C, after 0.5, 1, and 5 h ca. 25, 55, and 100%, respectively, of the starting material had disappeared, to give VsiSiMe₂OH and VsiSiMe₂OMe in a ca. 1:1 ratio. When a solution of the cyanate in 5% vol. H₂O-MeOH was stirred at room temperature for 30 min complete conversion into VsiSiMe₂OH took place. In contrast, no reaction took place when a similar solution of the isocyanate was kept at 60 °C for 7 days.

A solution of VsiSiMe₂OCN (0.044 mmol) in Ph₂O (0.5 cm³) was kept at 195 °C in an n.m.r. tube and the progress of the reaction was monitored by ¹H n.m.r. spectroscopy and revealed after 2, 5, and 11 h, respectively, *ca.* 55, 75, and 90% isomerization into the VsiSiMe₂NCO; a plot of the reciprocal of

the molar concentration of VsiSiMe₂OCN against time gives a satisfactory straight line with a slope indicating a value of 7.7 dm³ mol⁻¹ h⁻¹ for the second-order rate constant (and a half-life of *ca.* 1.5 h). When the initial concentration of the cyanate was slightly more than halved (7.0 mg in 0.5 cm³), *ca.* 39 and 75% isomerization took place in 2.5 and 9 h, respectively, indicating a value of *ca.* 7.8 dm³ mol⁻¹ h⁻¹ for the rate constant (and a half-life of *ca.* 3.1 h). These results, while only approximate, indicate clearly that the isomerization is a second-order process, as noted previously for TsiSiMe₂OCN.^{22b} The second-order rate constants for the two cyanates have remarkably similar values, that for TsiSiMe₂OCN being *ca.* 6.8 dm³ mol⁻¹ h⁻¹ (*not* dm³ mol⁻¹ s⁻¹ as previously reported).^{22b}

Experimental

Starting Materials and Solvents.—The compounds TsiSi- Me_2X (X = Cl, Br, or I),⁸ (Me_3Si)₂CCl₂,³¹ Ph₂SiHCl,³² and (CH₂=CH)Me₂SiCl¹³ were made by published procedures.

Acetonitrile was dried over and distilled from P_2O_5 then stored over Molecular Sieve 4A. 2,2,2-Trifluoroethanol was dried over and distilled from CaH₂ then stored over Molecular Sieve 4A. Other solvents were purified as previously described.³³

Spectra.—¹H N.m.r. spectra (at 60, 80, or 90 MHz unless otherwise indicated) were recorded with solutions in CCl₄ containing CH₂Cl₂ or Me₂CO as lock and reference. ¹⁹F N.m.r. spectra were recorded with a Bruker WP80 Fourier transform spectrometer operating at 75.4 MHz; solutions were in CCl₄, and chemical shifts are in p.p.m. relative to internal CFCl₃. ¹³C and ²⁹Si n.m.r. spectra were recorded with a Bruker WM360 Fourier transform spectrometer operating at 90.5 and 71.5 MHz, respectively; solutions were in CDCl₃, and shifts are in p.p.m. relative to internal Me₄Si.

I.r. spectra (for solutions in CCl_4 unless otherwise indicated) were recorded with a Perkin-Elmer 157G spectrophotometer. Mass spectra were determined by electron impact at 70 eV; isotope patterns for halogen-containing ions were as expected.

Preparation of (Me₃Si)₂C(Cl)(SiMe₂CH=CH₂) (VsiCl).—A solution of (Me₃Si)₂CCl₂ (11.0 g, 0.048 mol) in a mixture of THF (60 cm³), Et_2O (8 cm³), and pentane (3 cm³) was cooled in a bath at -110 °C and a 1.6M solution of BuⁿLi in hexane (32) cm³; 0.051 mol of BuⁿLi) precooled to -80 °C was added dropwise with stirring during 1 h. The mixture was stirred for a further 1 h at -110 °C, then Me₂(CH₂=CH)SiCl (6.30 g, 0.052 mol) cooled to -80 °C was added and the mixture was allowed to warm to room temperature. Volatile materials were removed under reduced pressure and the residual solid was extracted with pentane. The extract was filtered and evaporated to leave a paste, which upon trituration with cold MeOH gave a solid, and this was sublimed (70 °C at 0.2 Torr) to give chloro[dimethyl-(vinyl)silyl]bis(trimethylsilyl)methane (7.80 g, 58%), m.p. 120 °C; $\delta_{\rm H}$ 0.19 (18 H, s, SiMe₃), 0.26 (6 H, s, SiMe₂), and 5.7-6.4 (3 H, m, CH=CH₂); v(C=C) 1 590 cm⁻¹; m/z 263 (20%, $[M - Me]^+$), 251 (5, $[M - CH=CH_2]^+$), 217 (30), 213 (20, $[M - MeCl - Me]^+), 155 (50, [M - Me_3SiCl - Me]^+), 85$ (65, $[Me_2SiCH=CH_2]^+$), 73 (100, $[Me_3Si]^+$), and 59 (45, $[Me_2SiH]^+$) (Found: C, 46.9; H, 9.5. $C_{11}H_{27}ClSi_3$ requires C, 47.7; H, 9.7%).

Treatment of $(Me_3Si)_2C(SiMe_2CH=CH_2)(Li)$ (VsiLi) with Various Organosilicon Halides.—(a) A 1.5M solution of BuⁿLi in hexane (2.7 cm³; 40.5 mmol of BuⁿLi) was added dropwise to a stirred solution of VsiCl (11.0 g, 39.5 mmol) in a mixture of THF (60 cm³), Et₂O (8 cm³), and pentane (3 cm³) cooled in a bath at -100 °C. The mixture was subsequently stirred for 1 h at - 100 °C then allowed to warm to - 75 °C, and Me₂SiHCl (4.25 g, 45 mmol), cooled to -80 °C, was added dropwise with stirring. The mixture was allowed to warm to room temperature and volatile materials were evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give (*dimethylsily1*)[*dimethyl(viny1)sily1*]*bis(trimethylsily1)methane* (7.60 g, 67%), m.p. 235 °C (Found: C 52.0; H, 11.3. C_{1.3}H₃₄Si₄ requires C, 51.7; H, 11.3%); $\delta_{\rm H}$ 0.24 (18 H, s, SiMe₃), 0.29 (6 H, s, SiMe₂CH=CH₂), 0.32 (6 H, d, SiMe₂H), 4.17 (1 H, m, SiH), and 5.5-6.7 (3 H, m, CH=CH₂); v(SiH) (KBr) 2 100 cm⁻¹; *m/z* 287 (90%, [*M* - Me]⁺), 275 (10, [*M* - CH=CH₂]⁺), 213 (20, [*M* - Me₃SiH - Me]⁺), 201 (15, [*M* - Me₂HSiCH=CH₂]⁺), 199 (30), 187 (10), 129 (5), 85 (10), 73 (100), and 59 (30).

(b) A similar procedure but with Me₂SiCl₂ in place of Me₂SiHCl and culminating in sublimation (100 °C at 0.5 Torr) instead of recrystallization gave (*chlorodimethylsilyl*)[*dimethyl*(*vinyl*)*silyl*]*bis*(*trimethylsilyl*)*methane* (66%), m.p. 302 °C (Found: C, 46.9; H, 9.8. C_{1.3}H_{3.3}ClSi₄ requires C, 49.4; H, 9.8%); $\delta_{\rm H}$ 0.30 (18 H, s, SiMe₃), 0.34 (6 H, s, SiMe₂CH=CH₂), 0.60 (6 H, s, SiMe₂Cl), and 5.4—6.7 (3 H, m, CH=CH₂); *m/z* 321 (100%, [*M* - Me]⁺), 221 (35, [*M* - Me₃SiCH=CH₂ - Me]⁺), 213 (75, [*M* - Me₃SiCl - Me]⁺), 201 (25, [*M* - Me - CH₂=CH-Me₂SiCl]⁺), 185 (20), 155 (20), 129 (15), 73 (90), and 59 (10).

(c) The procedure described under (b), but starting from Me₃SiCl, gave VsiSiMe₃ (88%), m.p. 324 °C (lit., ¹³ > 325 °C); $\delta_{\rm H}$, as previously reported; v(C=C) 1 585 cm⁻¹ (lit., ¹³ 1 649 cm⁻¹; band probably wrongly identified); m/z 301 (55%, $[M - {\rm Me}]^+$), 213 (35, $(M - {\rm Me}_4{\rm Si} - {\rm Me}]^+$), 201 (15, $[M - {\rm Me}_3{\rm Si} - {\rm CH}={\rm CH}_2 - {\rm Me}]^+$), 129 (10), 73 (100), and 59 (20).

(d) The procedure described under (a), but on one quarter the scale and starting from Ph₂SiHCl, gave [dimethyl(vinyl)silyl]-(diphenylsilyl)bis(trimethylsilyl)methane (58%), m.p. 90 °C (Found: C, 65.0; H, 8.95. $C_{23}H_{38}Si_4$ requires C, 64.8; H, 8.9%); $\delta_{\rm H}$ 0.24 (18 H, s, SiMe₃), 0.30 (6 H, s, SiMe₂), 5.18 (1 H, s, SiH), 5.4—6.7 (3 H, m, CH=CH₂), and 7.1—7.9 (10 H, m, Ph); v(SiH) (KBr) 2 105 cm⁻¹; m/z 411 (20%, $[M - Me]^+$), 381 (20), 333 (100, $[M - PhH - Me]^+$), 321 (30, $[M - PhH - CH=CH_2]^+$), 233 (20), 197 (15), 175 (40), 135 (90, $[Me_2SiPh]^+$), 73 (70), and 59 (20).

(e) The procedure described under (d), but starting from PhMeSiHCl and culminating in sublimation (80 °C at 0.1 Torr) instead of recrystallization, gave [dimethyl(vinyl)silyl][methyl(phenyl)silyl]bis(trimethylsilyl)methane (69%), m.p. 75 °C (Found: C, 58.9; H, 10.0. $C_{18}H_{36}Si_4$ requires C, 59.3; H, 9.9%); $\delta_{\rm H}$ 0.16 (18 H, s, SiMe₃), 0.24 (6 H, s, SiMe₂), 0.40 (3 H, d, SiMe), 4.62 (1 H, m, H), 5.5—6.6 (3 H, m, CH=CH₂), and 7.2—7.8 (5 H, m, Ph); v(SiH) 2 100 cm⁻¹; m/z 349 (100%, [M - Me]⁺), 324 (25), 313 (45), 287 (10, [M - Ph]⁺), 247 (15), 213 (10), 199 (15), 175 (20), 135 (30), 85 (10), and 73 (90).

(f) The procedure described under (e), but starting from Et₂SiCl₂, and with sublimation at (120 °C at 0.1 Torr), gave (*chlorodiethylsilyl*)[*dimethyl*(*vinyl*)*silyl*]*bis*(*trimethylsilyl*)*meth-ane* (55%), m.p. 250 °C (Found: C, 49.7; H, 9.9. $C_{15}H_{37}$ ClSi₄ requires C, 49.4; H, 9.4%); $\delta_{\rm H}$ 0.27 (18 H, s, SiMe₃), 0.33 (6 H, s, SiMe₂), 0.9—1.3 (10 H, m, Et), and 5.4—6.5 (3 H, m, CH=CH₂); *m*/*z* 349 (100%, [*M* - Me]⁺), 335 (90), [*M* - Et]⁺), 227 (35), 213 (35), 201 (15), 199 (25), 155 (10), 141 (20), 129 (20), 113 (20), 99 (10), 85 (13), 73 (75), and 59 (32).

(g) The procedure described under (d), but starting from Et₂SiHCl and culminating in recrystallization from MeOH, gave (*diethylsilyl*)[*dimethyl*(*vinyl*)*silyl*]*bis*(*trimethylsilyl*)*methane* (65%), m.p. 190 °C (Found: C, 54.4; H, 11.0. C₁₅H₃₈Si₄ requires C, 54.5; H, 11.5%); $\delta_{\rm H}$ 0.20 (18 H, s, SiMe₃), 0.26 (6 H, s, SiMe₂), 0.90—1.08 (10 H, m, SiEt₂), 3.79—3.82 (1 H, m, SiH), and 5.6—6.4 (3 H, m, CH=CH₂); v(SiH) 2 080 cm⁻¹; m/z 315 (30%, [M - Me]⁺), 301 (100, [M - Et]⁺), 286 (15), 273 (25), 213 (25), 201 (15), 199 (35), 187 (10), 129 (15), 115 (10), 99 (10), 87 (15), 85 (15), 73 (100), and 59 (57).

(h) The procedure described under (d), but starting from Ph_2SiCl_2 and culminating in recrystallization from MeOH, gave a solid: $\delta_H 0.27$ (18 H, s), 0.32 (6 H, s), 1.05 (9 H, m), and 5.5—6.5 (3 H, m); m/z 285 (70%, $[M - Me]^+$) and 73 (100%), which was judged to be VsiBuⁿ (60%).

(i) The procedure described under (h), but starting from $PhMeSiCl_2$, likewise gave $VsiBu^n$ as the only isolated product.

Reactions of VsiSiMe₂H with Halogens.—(a) A 1M solution of Br_2 in CCl_4 (0.80 cm³; 0.80 mmol of Br_2) was added dropwise with stirring to a solution of VsiSiMe₂H (0.22 g, 0.73 mmol) in CCl_4 (5 cm³) containing CH_2 =CHSiMe₃ (0.1 g, 1.0 mmol) cooled in a bath at -20 °C. The mixture was stirred for 5 min, allowed to warm up, and then evaporated under reduced pressure. The residual solid was sublimed (100 °C at 0.2 Torr) to give (bromodimethylsilyl)[dimethyl(vinyl)silyl]bis(trimethylsilyl)methane (0.18 g, 65%), m.p. 310 °C; (Found: C 40.8; H, 8.2. $C_{13}H_{33}BrSi_4$ requires C, 40.9; H, 8.7%) $\delta_H 0.30$ (18 H, s, SiMe₃), 0.37 (6 H, s, SiMe₂CH=CH₂), 0.77 (6 H, s, SiMe₂Br), and 5.1-6.8 (3 H, m, CH=CH₂); m/z 365 (80% $[M - Me]^+$), 353 (25, $[M - CH=CH_2]^+$), 301 (10, $[M - Br]^+$), 263 (40), 213 (90, $[M - Me_3SiBr - Me]^+$, 201 (70, $[M - CH_2=CHMe_2Si Br - Me]^+$, 187 (20), 185 (30), 155 (35), 129 (40), 113 (20), 85 (40), 73 (100), and 59 (40).

(b) A solution of I₂ (4.3 g, 17.0 mmol), Me₃SiCH=CH₂ (2.0 g, 20 mmol), and VsiSiMe₂H (5.0 g, 16.5 mmol) in CCl₄ (100 cm³) was stirred for 14 h at room temperature, then shaken with aqueous NaHSO₃ to remove residual I₂. The organic layer was washed, dried (MgSO₄), and evaporated to leave a solid, which was recrystallized twice from pentane to give (*iododimethylsilyl*)-[*dimethyl(vinyl)silyl*]*bis(trimethylsilyl)methane* (5.2 g. 74%), m.p. 300 °C (Found: C, 36.4; H, 7.6. C₁₃H₃₃ISi₄ requires C, 36.45; H, 7.7%); $\delta_{\rm H}$ 0.36 (18 H, s, SiMe₃), 0.45 (6 H, s, SiMe₂CH=CH₂), 1.08 (6 H, s, SiMe₂I), and 5.5—6.7 (3 H, m, CH=CH₂); *m/z* 413 (45%, [*M* - Me]⁺), 401 (60, [*M* - CH=CH₂]⁺), 301 (100, [*M* - I]⁺), 213 (85, [*M* - Me₃-SiI - Me]⁺), 201 (72, [*M* - Me₂(CH₂=CH)SiI]⁺), 187 (40), 155 (10), 149 (50), 129 (50), 85 (30), 73 (100), and 59 (65).

When the same procedure was used but without the Me_3 -SiCH=CH₂, the ¹H n.m.r. spectrum and analysis by linked g.l.c.mass spectrometry indicated that the product was a mixture of VsiSiMe₂I and (Me₃Si)₂C(SiMe₂I)₂.

(c) A 1.0M solution of ICl in CCl₄ (0.73 cm³; 0.73 mmol of ICl) was added dropwise to a stirred solution of VsiSiMe₂H (0.22 g, 0.73 mmol) in CCl₄ (25 cm³) at room temperature. The mixture was stirred for 30 min then shaken with aqueous NaHSO₃. The organic layer was washed, dried (MgSO₄), and evaporated to leave a solid, which was judged from its ¹H n.m.r. spectrum to be a 2:1:2 mixture of VsiSiMe₂I, (Me₃Si)₂C(SiMe₂Cl)₂, and VsiSiMe₂H; a solution of authentic samples of these compounds in 2:1:2 ratio gave a virtually identical spectrum.

Reaction of VsiSiPh₂H with I₂ and Br₂.—(a) A solution of I₂ (0.44 g, 1.73 mmol) in CCl₄ (5 cm³) was added to a solution of VsiSiPh₂H (0.70 g, 1.63 mmol) in CCl₄ (10 cm³) and the mixture was stirred at room temperature for 96 h. Work-up as in the preceding experiment left a solid, which was sublimed (90 °C at 0.2 Torr). The ¹H n.m.r. spectrum of the product showed no signal from CH=CH₂ protons but the signal from the SiH proton was still present.

(b) A 1.0m solution of Br_2 in CCl_4 (1.1 cm³; 1.1 mmol of Br_2) was added to a stirred solution of VsiSiPh₂H (0.43 g, 1.0 mmol) in CCl_4 (10 cm³) cooled in a bath at -20 °C. Stirring at -20 °C was continued for 20 min then the mixture was allowed to warm up and then evaporated under reduced pressure. The residue was sublimed (70 °C at 0.5 Torr) to give a solid whose ¹H n.m.r. spectrum showed no signal from CH=CH₂ protons but did show one from SiH. Preparations of VsiSiMe₂X (X = O₂CMe, O₂CPh, O₃SC₆-H₄Me-p, O₃SCF₃, F, OCN, or O₂CCF₃) by Reactions of (1) with Silver Salts.—(a) A mixture of (1) (0.21 g, 0.50 mmol) and AgO₂CMe (0.10 g, 0.60 mmol) in CH₂Cl₂(10 cm³) was stirred at room temperature for 1.5 h. The solution was then filtered and evaporated to leave a solid, which was sublimed (120 °C at 0.2 Torr) to give (acetoxydimethylsilyl)[dimethyl(vinyl)silyl]bis(trimethylsilyl)methane (0.14 g, 80%), m.p. 225 °C (Found: C, 50.4; H, 10.2. C₁₅H₃₆O₂Si₄ requires C, 50.0; H, 10.0%); δ_H 0.33 (18 H, s, SiMe₃), 0.40 (6 H, s, SiMe₂CH=CH₂), 0.60 (6 H, s, SiMe₂O), 2.06 (3 H, s, COMe), and 5.5—6.7 (3 H, m, CH=CH₂); v(C=O) 1 725 cm⁻¹; m/z 345 (100%, [M - Me]⁺), 335 (5, [M - CH=CH₂]⁺), 303 (10), 287 (20), 275 (75), 213 (15), 201 (30), 187 (22), 155 (10), 129 (20), 85 (5), 73 (90), and 59 (15).

(b) The procedure described under (a), but with AgO₂CPh and culminating in recrystallization from pentane, gave (*benzoyloxy-dimethylsilyl*)[*dimethyl*(*vinyl*)*silyl*]*bis*(*trimethylsilyl*)*methane* (86%), m.p. 90 °C (Found: C, 56.7; H, 9.3. C₂₀H₃₈O₂Si₄ requires C, 56.9; H, 9.0%); $\delta_{\rm H}$ 0.28 (18 H, s, SiMe₃), 0.35 (6 H, s, SiMe₂CH=CH₂), 0.62 (6 H, s, SiMe₂O), 5.6–6.8 (3 H, m, CH=CH₂), and 7.3–8.2 (5 H, m, Ph); v(C=O) 1 725 cm⁻¹; *m/z* 407 (60%, [*M* – Me]⁺, 395 (10, [*M* – CH=CH₂]⁺), 287 (50), 275 (70), 213 (20), 201 (15), 137 (50), 179 (30), 155 (10), 129 (20), 122 (60), 105 (100, [COPh]⁺), 85 (80), 77 (80), 73 (98), and 59 (63).

(c) A mixture of (1) (0.10 g, 0.23 mmol), AgO₃SC₆H₄Me-*p* (0.12 g, 0.25 mmol), and anhydrous Et₂O (15 cm³) was stirred at room temperature for 1.5 h then filtered, and the filtrate was evaporated to leave a solid, which was recrystallized from pentane to give [dimethyl-(p-tolylsulphonyloxy)silyl][dimethyl-(vinyl)silyl]bis(trimethylsilyl)methane (0.09 g, 81%), m.p. 85 °C (Found: C, 50.5; H 8.6. C₂₀H₄₀O₃SSi₄ requires C, 50.7; H, 8.5%); $\delta_{\rm H}$ 0.21 (18 H, s, SiMe₃), 0.28 (6 H, s, SiMe₂CH=CH₂), 0.66 (6 H, s, SiMe₂O), 2.47 (3 H, s, Me), 5.5—6.6 (3 H, m, CH=CH₂), and 7.2—7.9 (5 H, m, Ph); *m*/*z* 457 (90%, [*M* – Me]⁺), 445 (5, [*M* – CH=CH₂]⁺), 357 (10), 349 (30), 301 (40, [*M* – O₃SC₆-H₄Me]⁺), 275 (70), 216 (60), 205 (80), 201 (50, *M* – O₃SC₆H₄-Me – Me]⁺), 187 (50), 155 (55), 129 (40), 91 (35), 85 (30), and 73 (100).

(d) A mixture of (1) (0.20 g, 0.47 mmol), AgO₃SCF₃ (0.12 g, 0.24 mmol), and Et₂O (20 cm³) was stirred under dry N₂ for 30 min at room temperature. The solution was then filtered and evaporated, and the residue was sublimed (100 °C at 0.1 Torr) to give [dimethyl(trifluoromethanesulphonyloxy)silyl][dimethyl-(vinyl)sylyl]bis(trimethylsilyl)methane (0.17 g, 81%) (Found: C, 36.8; H, 7.3. C₁₄H₃₃F₃O₃SSi₄ requires C, 37.3; H, 7.3%); $\delta_{\rm H}$ 0.26 (18 H, s, SiMe₃), 0.32 (6 H, s, SiMe₂CH=CH₂), 0.67 (6 H, s, SiMe₂O), and 5.5—6.5 (3 H, m, CH=CH₂); $\delta_{\rm F}$ -72.7 (s); m/z 435 (60%, [M - Me]⁺), 423 (20, [$M - CH=CH_2$]⁺), 349 (15), 301 (10, [$M - O_3SCF_3$]⁺), 275 (50), 213 (60, [$M - Me_3$ Si-O₃SC₆H₄Me - Me]⁺), 201 (40), 187 (40), 155 (25), 141 (15), 129 (30), 85 (50), 73 (10), and 59 (70).

(e) A mixture of (1) (0.12 g, 0.28 mmol), AgBF₄ (0.057 g, 0.29 mmol), and Et₂O (20 cm³) was stirred at room temperature for 1 h, then the solution was filtered and evaporated. The residual solid was sublimed (90 °C at 0.1 Torr) to give [dimethyl(vinyl)-silyl](fluorodimethylsilyl)bis(trimethylsilyl)methane (0.06 g, 67%), m.p. 190 °C (Found: C, 48.5: H, 10.5. C_{1.3}H_{3.3}FSi₄ requires C, 48.75; H, 10.3%); $\delta_{\rm H}$ 0.23 (18 H, s, SiMe₃), 0.30 (6 H, s, SiMe₂CH=CH₂), 0.34 (6 H, d, SiMe₂F), and 5.4—6.6 (3 H, m, CH=CH₂); $\delta_{\rm F}$ – 143.8 (m); m/z 305 (85%, $[M - Me]^+$), 293 (15, $[M - CH=CH_2]^+$), 213 (100, $[M - Me_3SiF - Me]^+$), 205 (75), 201 (40), 187 (10), 155 (10), 129 (10), 85 (10), and 73 (70).

(f) A mixture of (1) (0.02 g, 0.47 mmol), freshly prepared AgOCN (0.025 g, 0.50 mmol), and CH_2Cl_2 (25 cm³) was stirred under dry N₂ for 30 min. The solution was filtered under dry N₂ and then evaporated to leave a solid, which was recrystallized from pentane to give (*cyanatodimethylsilyl*)[*dimethyl(vinyl*)-

sily1]bis(trimethylsily1)methane (0.12 g, 75%) (Found: C, 49.1; H, 9.4; N, 3.7. $C_{14}H_{33}ONSi_4$ requires C, 49.0; H, 9.6; N, 4.1%); $\delta_H 0.34$ (18 H, s, SiMe_3), 0.40 (6 H, s, SiMe_2CH=CH_2), 0.67 (6 H, s, SiMe_2OCN), and 5.4—6.4 (3 H, m, CH=CH_2); δ_C 4.37 (s, SiMe_3), 4.56 (s) and 4.72 (s), (one of these from SiMe_2OCN and the other from SiMe_2CH=CH_2), 109.9 (s, OCN), 132.4 (s) and 140.9 (s) (the last two from CH=CH_2); $\delta_{Si} - 9.22$ (s, SiMe₂-CH=CH₂), -1.4 (s, SiMe_3), and 38.1 (s, SiMe_2OCN); v(SiOCN) (CH₂Cl₂) 2 220 cm⁻¹; m/z 328 (30%, [M - Me]⁺), 316 (5, [M - CH=CH₂)⁺], 303 (10), 285 (10), 275 (20), 213 (15, [M - Me_3SiOCN - Me]⁺), 201 (10), 187 (10), 129 (10), 100 (10, [Me_2SiOCN]⁺), 85 (10), 73 (100), and 59 (30).

(g) A mixture of (1) (0.21 g, 0.50 mmol), AgO_2CCF_3 (0.12 g, 0.60 mmol), and CH_2Cl_2 (10 cm³) was stirred at room temperature for 15 min. The solution was filtered then evaporated, and the residual solid sublimed (100 °C at 0.5 Torr) to give [dimethyl(vinyl)silyl](trifluoroacetoxydimethylsilyl)bis-(trimethylsilyl)methane, m.p. 185 °C (Found: C, 45.0; H, 8.2. $C_{15}H_{33}F_3O_2Si_4$ requires C, 44.8; H, 8.4%); δ_H 0.31 (18 H, s, SiMe_3), 0.37 (6 H, s, SiMe_2CH=CH_2), 0.64 (6 H, s, SiMe_2O), and 5.8—6.5 (3 H, m, CH=CH_2); δ_F -71.4 (s); v(C=O) 1 765 cm⁻¹; m/z 399 (40%, $[M - Me]^+$), 387 (15, $[M - CH=CH_2]^+$), 297 (15), 275 (20), 213 (20, $[M - Me_3SiO_2CCF_3 - Me]^+$), 205 (75), 201 (20), 187 (10), 155 (10), 129 (10), 85 (15), 77 (20, $[Me_2FSi]^+$), and 73 (100).

(h) A solution of (1) (0.10 g, 0.23 mmol) in CH_2Cl_2 (10 cm³) was stirred at room temperature in the presence of freshly prepared AgSCN (0.04 g, 0.24 mmol). After 30 min a sample was withdrawn and filtered, and its ¹H n.m.r. spectrum showed (in addition to peaks from SiMe₂ protons) three singlets in the SiMe₃ region, at δ 0.36, 0.30, and 0.26 ppm., in a *ca*. 2:2:3 ratio. [The signals at δ 0.36 and 0.30 p.p.m. are attributable to (1) and VsiSiMe₂NCS, respectively.] After a further 1 h the remaining solution was filtered then evaporated under reduced pressure to give VsiSiMe₂NCS, with properties identical to those described under (*a*) immediately below.

Preparation of VsiSiMe₂X (X = NCS, N₃, NCO, or Cl) by Reactions of (1) with Alkali Metal Salts.—(a) A mixture of (1) (0.50 g, 1.17 mmol), KSCN (2.0 g, 20 mmol), and MeCN (25 cm³) was boiled under reflux for 1 h then cooled to room temperature. Hexane was added, followed by an excess of water, and the organic layer was separated, washed, dried (MgSO₄), and evaporated to leave [dimethyl(vinyl)silyl](isothiocyanatodimethylsilyl)bis(trimethylsilyl)methane (0.35 g, 85%), m.p. 230 °C (Found: C, 46.5; H, 8.9; N, 3.8. C₁₄H₃₃NSSi₄ requires C, 46.8; H, 9.2; N, 3.9%); $\delta_{\rm H}$ 0.30 (18 H, s, SiMe₃), 0.38 (6 H, s, SiMe₂CH=CH₂), 0.52 (6 H, s, SiMe₂NCS), and 5.5—6.6 (3 H, m, CH=CH₂); v(SiNCS) 2 080 cm⁻¹; m/z 344 (50%, [M - Me]⁺), 332 (10, [M - CH=CH₂]⁺), 213 (20, [M - Me₃SiNCS -Me]⁺), 201 (15), 155 (10), 129 (10), 85 (15), 73 (100), and 59 (33).

(*b*) A mixture of (1) (0.10 g, 0.23 mmol), NaN₃ (0.25 g, 3.85 mmol); and MeCN (20 cm³) was boiled under reflux for 10 h then cooled and added to water. Extraction with hexane, followed by washing drying (MgSO₄), and evaporation of the extract left a solid, which was sublimed (80 °C at 0.5 Torr) to give (*azidodimethylsilyl*)[*dimethyl*(*vinyl*)*silyl*]*bis*(*trimethyl-silyl*)*methane* (0.060 g, 74%), m.p. 220 °C; $\delta_{\rm H}$ 0.28 (18 H, s, SiMe₃), 0.34 (6 H, s, SiMe₂CH=CH₂), 0.50 (6 H, s, SiMe₂N₃), and 5.6—6.6 (3 H, m, CH=CH₂); v(SiN₃) 2 140 cm⁻¹; *m/z* 328 (90%, [*M* - Me]⁺), 316 (20, [*M* - CH=CH₂]⁺), 301 (95, (*M* - N₃]⁺), 284 (40), 274 (30), 258 (30), 242 (30), 228 (30), 212 (30), 202 (30), 188 (30), 100 (15, [Me₂SiN₃]⁺), 85 (15), 73 (100), and 59 (30).

(c) The procedure described under (a) above but starting from (1) (0.16 g, 0.37 mmol), KOCN (0.50 g, 6.2 mmol), and MeCN (15 cm³), and with reflux for 8 h, gave a solid, which was recrystallized from pentane to give [dimethyl(vinyl)silyl]-

(isocyanatodimethylsilyl)bis(trimethylsilyl)methane (0.090 g, 70%), m.p. 225 °C (Found: C, 48.7; H, 9.7. $C_{14}H_{33}NOSi_4$ requires C, 49.0; H, 9.6%); δ_H 0.28 (18 H, s, SiMe_3), 0.35 (6 H, s, SiMe_2CH=CH_2), 0.48 (6 H, s, SiMe_2NCO), and 5.5—6.7 (3 H, m, CH=CH_2); v(SiNCO) (CH_2Cl_2) 2 245 cm⁻¹; *m*/*z* 343 (30%, [*M*]⁺), 328 (100, [*M* – Me]⁺), 316 (30, [*M* – CH=CH_2]⁺), 301 (5, [*M* – NCO]⁺), 285 (80), 228 (70), 213 (80), [*M* – Me_3SiNCO – Me]⁺), 201 (45), 187 (15), 155 (30), 129 (30), 100 (40), [Me_2SiNCO]⁺), 85 (40), and 73 (100).

(d) A mixture of (1) (0.50 g, 0.12 mmol), KCl (0.27 g, 3.6 mmol) and MeCN (20 cm³) was boiled under reflux for 20 h. The solvent was then evaporated under reduced pressure, and the residual solid extracted with hexane. The extract was washed, dried, and evaporated to give VsiSiMe₂Cl (0.32 g, 80%), with properties identical to those reported above.

Preparation of VsiSiMe₂OMe.—(*a*) A solution of (1) (0.10 g, 0.30 mmol) in MeOH (20 cm³) was boiled under reflux for 15 days. Evaporation of the solvent under reduced pressure left a solid, which was sublimed (100 °C at 0.5 Torr) to give [*dimethyl(vinyl)silyl*](*methoxydimethylsilyl)bis(trimethylsilyl*)-*methane* (0.060 g, 77%), m.p. 224 °C (Found: C, 50.8; H, 10.9. C₁₄H₃₆OSi₄ requires C, 50.6; H, 10.8%); δ_H 0.21 (18 H, s, SiMe₃), 0.27 (12 H, s, SiMe₂CH=CH₂ + SiMe₂OMe), 3.37 (3 H, s, OMe), and 5.45—6.65 (3 H, m, CH=CH₂); *m/z* 317 (100%, [*M* – Me]⁺), 305 (35, [*M* – CH=CH₂]⁺), 301 (15, [*M* – OMe]⁺), 275 (20), 217 (30), 213 (35, [*M* – Me₃SiOMe – Me]⁺), 201 (60), 187 (30), 155 (35), 129 (30), 89 (30, [Me₂SiOMe]⁺), 85 (20), 73 (100), and 59 (50).

(b) A solution of (1) (0.050 g, 0.15 mmol) and AgO₃SCF₃ (0.040 g, 0.16 mmol) in MeOH (20 cm³) was stirred under dry N₂ for 15 min at room temperature then filtered and evaporated, and the residual solid recrystallized from pentane to give Vsi-SiMe₂OMe (70%) with properties identical to those described under (*a*).

Preparation of VsiSiMe₂OH.—(a) A mixture of VsiSiMe₂H (0.10 g, 0.33 mmol), KMnO₄ (0.060 g, 0.38 mmol), and C₅H₅N (2 cm³) in MeOH (25 cm³) was boiled under reflux for 28 h. The solution was filtered and the solvent evaporated under reduced pressure, to leave a solid, which was extracted with hexane. The extract was filtered and evaporated, and the residue sublimed (80 °C at 0.2 Torr) to give [dimethyl(vinyl)silyl](hydroxydimethylsilyl)bis(trimethylsilyl)methane (0.071 g, 68%), m.p. 197 °C (Found: C, 49.0; H, 10.8. C₁₃H₃₄OSi₄ requires C, 49.05: H, 11.0%); $\delta_{\rm H}$ 0.22 (18 H, s, SiMe₃), 0.30 (12 H, s, SiMe₂CH=CH₂ + SiMe₂OH), 1.4 (1 H, br s, OH), and 5.2— 6.5 (3 H, m, CH=CH₂); v(SiOH) 3 690 and 3 600—3 300 cm⁻¹; m/z 303 (55, [M - Me]⁺), 291 (15, [M - CH=CH₂]⁺), 287 (30), 275 (90), 213 (20, [M - Me₃SiOH - Me]⁺), 201 (20), 187 (50), 155 (15), 129 (30), 85 (30), 73 (100), and 59 (45).

(b) A solution of (1) (0.12 g, 0.28 mmol) (initially dissolved in ca. 0.1 cm³ of CCl₄) in 5% v/v H₂O-Me₂SO (20 cm³) was kept at 60 °C for 2 h (after which the ¹H n.m.r. spectrum showed that reaction was complete). The solution was shaken with a mixture of CCl₄-H₂O, and the CCl₄ layer separated, washed, dried (MgSO₄), and evaporated to leave VsiSiMe₂OH, with properties identical to those described above.

(c) A mixture of (1) (0.15 g, 0.35 mmol) and AgO₃SCF₃ (0.090 g, 0.38 mmol) in a mixture of H_2O (0.5 cm³) in MeCN (19.5 cm³) was stirred at room temperature for 15 min. The solution was filtered and evaporated and the residue extracted with hexane. The extract was filtered and dried to give VsiSiMe₂OH (0.076 g, 68%), with properties identical to those described above.

Reactions of VsiSiMe₂X (X = OMe, OH, O₂CMe, O₂CCF₃, or H) with CF₃CO₂H.—(a) Trifluoroacetic acid (0.5 cm³) at room temperature was added to a solution of VsiSiMe₂OMe (10 mg) in a drop (ca. 0.01 cm³) of CCl₄ contained in a n.m.r. tube. The ¹H n.m.r. spectrum was recorded as soon as possible (ca. 1 min after mixing), and showed only singlets at δ 0.42 and 0.78 p.p.m. in a 3:2 integration ratio, attributable to (Me₃Si)₂C(SiMe₂OCCF₃)₂. Addition of an authentic sample enhanced the signals.

(b) The procedure described under (a) was repeated but with a 4:1 v/v mixture of CCl₄ and CF₃CO₂H. After 2 min at 35 °C the ¹H n.m.r. spectrum showed singlets at δ 0.33, 0.51, and 0.70 p.p.m. in a 3:1:1 ratio, thought to be due to $(\text{Me}_3\text{Si})_2\text{C}$ -(SiMe₂OMe)(SiMe₂O₂CCF₃). After 45 min only $(\text{Me}_3\text{Si})_2\text{C}$ -(SiMe₂O₂CCF₃)₂ was present. No further reaction occurred during 30 h at 60 °C.

(c) A little VsiSiMe₂OH (10 mg) was dissolved in a drop of CCl₄ (ca. 0.01 cm³) in an n.m.r. tube and CF₃CO₂H (1 cm³) at 35 °C was added. The ¹H n.m.r. spectrum recorded about 1 min after mixing showed singlets at δ 0.03 and 0.05 p.p.m. due to VsiSiMe₂OH, and other singlets at δ 0.08, 0.23, and 0.44 p.p.m. in a 3:1:1 ratio, attributable to (Me₃Si)₂C(SiMe₂OH)-(SiMe₂O₂CCF₃). After 10 min these two compounds were present in a ca. 3:7 ratio, and after 1 h only (Me₃Si)₂C-(SiMe₂O₂CF₃)₂ was present. No further reaction took place during 48 h at 60 °C.

(d) A solution of VsiSiMe₂O₂CMe (20 mg) in CF₃CO₂H (1 cm³) in an n.m.r. tube was kept at 35 °C. After 18 h the ¹H n.m.r. spectrum showed, in addition to the singlets from the starting material at δ 0.36, 0.42, and 0.66 p.p.m., singlets at δ 0.42, 0.44, and 0.78 p.p.m., assumed to be due to (Me₃Si)₂-C(SiMe₂O₂CCF₃)(SiMe₂O₂CMe), these two components being present in a 3:2 ratio. After 6 days only singlets at δ 0.42 and 0.78 p.p.m., attributable to (Me₃Si)₂C(SiMe₂O₂CCF₃)₂, were observed. Evaporation gave the latter compound with properties identical to those of an authentic sample.

(e) The procedure described under (d) was repeated, but starting with VsiSiMe₂O₂CCF₃. After 70 h the ¹H n.m.r. spectrum indicated that ca. 50% of the latter had been converted into $(Me_3Si)_2C(SiMe_2O_2CF_3)_2$ (δ_H 0.42 and 0.78 p.p.m.), and this conversion was complete after 12 days. Evaporation gave $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$ with properties identical to those of an authentic sample.

(f) Trifluoroacetic acid (10 cm³) was added to a solution of VsiSiMe₂H (0.15 g) in a drop of CCl₄, and the mixture was kept at 60 °C. After 1 h the ¹H n.m.r. spectrum showed that no VsiSiMe₂H remained, so the mixture was diluted with water, and extracted with pentane, and the extract was washed, dried, and evaporated to give exclusively VsiSiMe₂O₂CCF₃, with properties identical to those of the sample made by reaction of (1) with AgO₂CCF₃, described above.

Treatment of Various $VsiSiMe_2X$ Compounds (X = OH, $O_3SC_6H_4Me-p$, F, Cl. Br, NCO, or NCS) with MeOH or $H_2O-MeOH$.—The starting materials were recovered unchanged when solutions of the following $VsiSiMe_2X$ compounds in MeOH were boiled under reflux for the time indicated: (X =) OH, 4 h; $O_3SC_6H_4Me-p$, 5 days; F, Cl, Br, or NCO, 2 days; and NCS, 12 days. (In the last case a sample made by use of KSCN and another made by use of AgSCN gave the same result.)

(b) When a solution of $VsiSiMe_2NCO$ in 5% v/v $H_2O-MeOH$ was kept at 60 °C for 7 days the starting material was recovered unchanged.

(c) A solution of VsiSiMe₂N₃ (10 mg) (initially dissolved in ca. 0.01 cm³ of CCl₄) in 5% v/v H₂O-MeOH (1 cm³) in a n.m.r. tube, was kept at 50 °C. In 10 days there was no change in the ¹H n.m.r. spectrum.

Reactions of VsiSiMe₂OCN.—(a) A little VsiSiMe₂OCN (10 mg) was dissolved in a drop of CCl₄ (ca. 0.01 cm³) in an n.m.r. tube and MeOH (0.5 cm³) was added. The tube was sealed,

briefly shaken, and transferred to the probe of the spectrometer at 35 °C. The ¹H n.m.r. spectra indicated that after 0.5, 1, and 6 h, respectively, *ca.* 25, 55, and 100% of the cyanate had reacted, to give VsiSiMe₂OMe and VsiSiMe₂OH in a *ca.* 1:1 ratio.

(b) A solution of VsiSiMe₂OCN (0.50 g) in 5% v/v H₂O-MeOH (20 cm³) was stirred at room temperature for 30 min. The solvent was then evaporated off under reduced pressure to leave exclusively VsiSiMe₂OH (0.033 g, 74%), with properties identical to those of an authentic sample.

(c) A little VsiSiMe₂OCN (15 mg) was dissolved in Ph₂O (0.5 cm³) in an n.m.r. tube, which was sealed, placed in a bath at 195 \pm 3 °C, and removed at intervals for recording of the ¹H n.m.r. spectrum. From the relative heights of the SiMe₂NCO and SiMe₂OCN signals it was judged that after 2, 5, and 11 h, the isomerization into the isocyanate was, respectively, *ca.* 55, 75, and 90%, complete.

In a similar procedure but starting with a smaller amount (7 mg) of the cyanate, ca. 40 and 75% isomerization had occurred after 2.5 and 9 h, respectively.

Reaction of VsiSiMe₂OH with NaOMe-MeOH.—A solution of VsiSiMe₂OH (0.06 g) in 0.20M-NaOMe-MeOH (20 cm³) was boiled under reflux for 2 h then cooled. Hexane was added, followed by an excess of water, and the organic layer was separated, washed, dried (MgSO₄), and evaporated, to leave a thick liquid. Linked g.l.c.-mass spectrometry (3% OV 101 on Chromasorb G at 180 °C) revealed only one new component (95%) along with unchanged starting material (5%). The product was isomeric with the starting material; m/z 303 (100%, $[M - Me]^+$), 215 (10), 203 (10), 129 (5), 85 (5), 73 (20), and 59 (5). The ¹H n.m.r. spectrum indicated that it was (Me₃Si)₂-CH(SiMe₂OSiMe₂CH=CH₂); $\delta_{\rm H} - 0.06$ (1 H, s, CH), 0.16 (18 H, s, SiMe₃), 0.22 (12 H, s, SiMe₂O + SiMe₂CH=CH₂), and 5.5—6.6 (3 H, m, CH=CH₂).

Treatment of VsiSiMe₂OMe with 0.4M-NaOMe-MeOH.—A solution of VsiSiMe₂OMe (0.10 g) in 0.40M-NaOMe-MeOH (20 cm³) was boiled under reflux for 72 h. Work-up as in the preceding experiment gave exclusively unchanging starting material (0.090 g, 90%).

Reaction of (1)-with 1M-NaOMe-MeOH.—A solution of (1) (0.080 g) in 1M-NaOMe-MeOH (10 cm³) was boiled under reflux for 24 h then cooled. Hexane was added, followed by an excess of water, and the organic layer was washed, dried $(MgSO_4)$, and evaporated to leave a residue that was subjected to g.l.c.-mass spectrometry (5% OV 101 on Chromasorb G at 200 °C), to reveal the presence of five components (A)--(E), in the ratio (A):(B):(C):(D):(E) of *ca.* 2:3:1:1:2. The mass spectra of components (A), (B), and (E) were consistent with the formulations (Me₃Si)₂CHSiMe₂OMe, (Me₃Si)CH(SiMe₂-CH=CH₂)(SiMe₂OMe), and (Me₃Si)₂C(SiMe₂CH=CH₂)(Si-Me₂OMe): (A), m/z 233 (100%, $[M - Me]^+$), 219 (15), 203 (15), 187 (5), 129 (35), 89 (5, [Me₂SiOMe]⁺), and 73 (25); (B), m/z 245 (100%, $[M - Me]^+$), 233 (35, $[M - CH=CH_2]^+$), 203 (10), 141 (25), 129 (25), 89 (10), 85 (5), 73 (35), and 59 (26); (C), m/z 275 (60%), 245 (10), 233 (10), 187 (7), 129 (30), 89 (10), 73 (10), and 59 (10); (**D**), m/z 319 (30%), 315 (25), 287 (40), 245 (100), 233 (10), 203 (10), 115 (12), 89 (15), 73 (35), and 59 (30); (E) 317 (100%, $[M - Me]^+$), 305 (20, $[M - CH=CH_2]^+$), 213 $(10, [M - Me_3SiOMe - Me]^+), 201 (10, [M - Me_3MeOSi CH=CH_2 - Me]^+$, 129 (10), 89 (10), 85 (5), and 73 (40).

Reaction of VsiSiEt₂Cl with AgBF₄.—(a) A mixture of VsiSiEt₂Cl (0.080 g, 0.22 mmol), AgBF₄ (0.045 g, 0.23 mmol), and CH₂Cl₂ (10 cm³) was stirred at room temperature for 12 h, during which evolution of gas was noticed. The solution was filtered then evaporated to leave a solid, the ¹H n.m.r. spectrum

of which showed no signals from vinyl protons. Its mass spectrum was consistent with it being $(Me_3Si)_2C(SiMe_2F)$ - $(SiEt_2Cl)$ and/or its isomer; m/z 341 (80, $[M - Me]^+$), 327 (65, $[M - Et]^+$), 321 (35, $[M - Cl]^+$), 235 (50, $[M - Me_3SiF - Me]^+$), 205 (65), 129 (30), 113 (20), 77 (30, $[Me_2SiF]^+$), and 73 (100).

(b) In a similar procedure but with Et_2O as solvent, there was no detectable reaction in 48 h.

Reaction of VsiSiEt₂Cl with AgO₃SCF₃.—A mixture of VsiSiEt₂Cl (0.081 g, 0.22 mmol), AgO₃SCF₃ (0.063 g, 0.24 mmol), and CH₂Cl₂ (10 cm³) was boiled under reflux for 4 h. The solution was then filtered and evaporated to give a solid, the ¹H n.m.r. spectrum of which was complex, but included some signals in the vinyl proton region. The ¹⁹F spectrum showed two singlets, at -72.5 and -74.1 p.p.m., in a 2:3 ratio. Linked g.l.c.-mass spectrometry gave two peaks in a 35:65 ratio, the second having a mass spectrum identical with that of the starting material and the first a mass spectrum consistent with the formulation (Me₃Si)₂C(SiMe₂O₃SCF₃)(SiEt₂Cl) or its isomers; m/z 471 (65%, $[M - Me]^+$), 457 (30, $[M - Et]^+$), 337 (10, $[M - O_3SCF_3]^+$), 205 (12), 129 (10), and 73 (100).

Reaction of $VsiSiEt_2I$ with $AgBF_4$.—A mixture of (1) (0.10 g, 0.22 mmol), AgBF₄ (0.047 g, 0.24 mmol), and Et₂O (20 cm³) was stirred at room temperature for 30 min. The solution was filtered and evaporated, to leave a solid. The ¹H n.m.r. spectrum (360 MHz) of this product showed it to be a mixture, and the components were judged to be: (i) $(Me_3Si)_2C(SiMe_2F)(SiEt_2F)$; $\delta_{\rm H}$ 0.24 (18 H, s, SiMe₃), 0.39 (6 H, d, J 7.5 Hz, SiMe₂), and 0.94-1.26 (10 H, m, SiEt₂); (*ii*) (Me₃Si)₂C(SiMe₂CH=CH₂)-(SiEt₂F); δ 0.25 (18 H, s, SiMe₃), 0.30 (6 H, s, SiMe₂CH=CH₂), 0.94-1.26 (10 H, m, SiEt₂), and 5.4-6.4 (3 H, m, CH=CH₂); and (iii) $(Me_3Si)_2C(SiMe_2F)(SiEt_2CH=CH_2)$; $\delta_H 0.25$ (18 H, s, SiMe₃), 0.37 (6 H, d, J 7.5 Hz, SiMe₂), 0.94-1.26 (10 H, m, SiEt₂), and 5.4—6.4 (3 H, m, CH= CH_2); these appeared to be present in a 1:3:6 ratio as judged from the heights of the signals from the SiMe₂ protons. The ¹⁹F n.m.r. spectrum showed multiplets, with the splitting pattern expected for SiEt₂F signals, at -154.5 and -155.4, and two more, with splitting patterns expected for SiMe₂F signals, at -136.8 p.p.m. and -138.6 p.p.m. Linked g.l.c.-mass spectrometry (3% OV 101 on Chromasorb G at 220 °C) revealed three components, (A), (B), and (C), in a ratio of 1:3:6. (A) appeared to be the difluoride $(Me_{3}Si)_{2}C(SiMe_{2}F)(SiEt_{2}F) \{m/z \ 325 \ (50\%, [M - Me]^{+}), 311\}$ $(50, [M - Et]^+), 234 (15), 219 (80), 205 (60), 199 (22), 129 (15),$ 87 (10), 73 (100), 59 (10)}, and (B) and (C) were isomers, thought to be (Me₃Si)₂C(SiMe₂F)(SiEt₂CH=CH₂) and (Me₃Si)₂C(Si-Me₂CH=CH₂)(SiEt₂F), respectively, m/z 333 ([M – Me]⁺), 321 ([M – CH=CH₂]⁺), 319 ([M – Et]⁺), 227, 213, 129, 85, 73 (base peak), and 59. The ²⁹Si n.m.r. spectrum showed signals at: (i) $\delta - 9.32$ (s, SiMe₂CH=CH₂), -2.08 (s, SiMe₃), and 27.1 p.p.m. (d, J 284 Hz, SiEt₂F) attributed to (Me₃Si)₂C(SiMe₂- $CH=CH_2$)(SiEt₂F); (*ii*) -4.34 (s, SiEt₂CH=CH₂), -2.08 (s, SiMe₃), and 26.4 p.p.m. (d, J 294.5 Hz, SiMe₂F), attributed to $(Me_3Si)_2C(SiMe_2F)(SiEt_2CH=CH_2)$; and (*iii*) -2.73 (s, SiMe_3), 26.5 (d, J 294.5 Hz, SiMe₂F), 26.7 p.p.m. (d, J 284 Hz, SiEt₂F), attributed to $(Me_3Si)_2C(SiMe_2F)(SiEt_2F)$.

When the procedure was repeated, but with CH_2Cl_2 as solvent, the outcome, as judged from the ¹H and ¹⁹F n.m.r. spectra, was effectively the same.

Reaction of VsiSiEt₂I with AgO₂CCF₃.—A mixture of VsiSiEt₂I (0.10 g, 0.22 mmol), AgO₂CCF₃ (0.053 g, 0.24 mmol), and Et₂O (20 cm³) was stirred for 1 h at room temperature. The solution was filtered and evaporated, and the residue was sublimed (80 °C at 0.1 Torr) to give a white solid, which was judged from its ¹H and ¹⁹F n.m.r. spectra to contain VsiSiEt₂-

 O_2CCF_3 and $(Me_3Si)_2C(SiMe_2O_2CCF_3)(SiEt_2CH=CH_2)$ in a 1:2 ratio [as indicated by the relative heights of (i) the ${}^{1}H$ signals from the SiMe₃ groups and (*ii*) the two 19 F signals]. For $VsiSiEt_2O_2CCF_3$: $\delta_H 0.29 (18 H, s, SiMe_3), 0.33 (6 H, s, SiMe_2),$ 0.88—1.33 (10 H, m, SiEt₂), and 5.06—6.45 (3 H, m, CH=CH₂); - 70.3 p.p.m. For $(Me_3Si)_2C(SiMe_2O_2CCF_3)$ - $\delta_{\mathbf{F}}$ $(SiEt_2CH=CH_2): \delta_H 0.29 (18 H, s, SiMe_3), 0.62 (6 H, s, s)$ SiMe₂), 0.88-1.33 (10 H, m, SiEt₂), and 5.06-6.45 (3 H, m, CH=CH₂); $\delta_{\rm F}$ – 71.05 p.p.m. In addition the ¹⁹F n.m.r. spectrum showed two small singlets (with combined heights ca. 10% of the combined heights of the main signals) at -71.2 and -70.4, attributable to $(Me_3Si)_2C(SiMe_2O_2CCF_3)(SiEt_2O_2CCF_3);$ Linked g.l.c.-mass spectrometry (3% OV 101 on Chromasorb G) gave only one substantial peak, and the mass spectra of samples from the front and rear sections of this peak had identical mass spectra, assumed to arise from VsiSiEt₂O₂CCF₃ and (Me₃Si)₂C(SiMe₂O₂CCF₃)(SiEt₂CH=CH₂); m/z (main ions only) 427 ([M - Me]⁺), 415 ([M - CH=CH₂]⁺), 413 ([M - Et]⁺), 329 ([M - O₂CCF₃]⁺), 85, and 73 (base peak).

Comparisons of the Reactivities of VsiSiMe₂X and TsiSiMe₂X Compounds. (1) Solvolysis.—For reactions in MeOH, CF₃C-H₂OH, CF₃CO₂H, or MeOH (sometimes containing NaOMe or H₂O), H₂O-Me₂SO, or H₂O-DMF, usually about 5—10 mg of the organosilicon compound was dissolved in a drop (*ca*. 0.01 cm³) of CCl₄ in an n.m.r. tube, then the appropriate solvent (0.5—1.0 cm³) was added, and the tube was capped, shaken briefly, then placed either in the probe of the spectrometer or (for reactions at temperatures above 35 °C) in a thermostat bath, from which it was removed at intervals for recording of the spectrum. The progress of the reaction was monitored by determining the ratio of the height of a suitable ¹H n.m.r. signal from the starting material [usually from (Me₃Si)₃C or (Me₃Si)₂C protons] to that of the analogous signal from the product.

For reactions in $H_2O-MeCN$, a solution of 0.25 mmol of the organosilane (initially dissolved in a drop of CCl_4) in 25 cm³ of $H_2O-MeCN$ was kept in a stoppered vessel in a thermostat bath, and samples (*ca.* 2 cm³) were withdrawn at intervals and quickly evaporated to dryness under reduced pressure. The residue was dissolved in CCl_4 , the solution was filtered, and its n.m.r. spectrum recorded.

A solution described as containing $x_{0}^{\circ} v/v$ of water consisted of a mixture of x vol of water with (100 - x) vol of the solvent. Unless otherwise indicated, the identities of the products were established by comparison of their ¹H n.m.r. spectra with those of similar solutions of authentic samples.

(a) Methanolysis of the iodides (1) and (2). Reactions were at 49 °C. For reactions in MeOH or 0.05M-NaOMe-MeOH the Me₃Si peaks of the starting material and products were used. For reactions of (1) in 0.10-0.40M-NaOMe-MeOH the ratio of the heights of the Me₃Si signals of the starting material to the combined heights of the corresponding peaks of the products VsiSiMe₂OMe and (Me₃Si)₂CHSiMe₂OMe were used; the final ratios of these products were *ca*. 6:1, 4:1, and 2:1 in 0.10, 0.20, and 0.40M-NaOMe-MeOH respectively. Good first-order plots were obtained up to >80% completion of the reactions, and the values of the rate constants are shown in Table 2.

(b) Methanolysis of VsiSiMe₂O₃SCF₃. The MeOH or NaOMe–MeOH was preheated to 35 °C before addition to the organosilane. The sole product in each case was VsiSiMe₂OMe. Good first-order kinetics were obtained up to >90% completion of the reaction. The values of the rate constants are shown in Table 2.

(c) Hydrolysis of (1) and (2). The sole product in each case was the corresponding hydroxide. Good first-order plots were obtained up to > 80% completion of the reaction, and the values of the half-lives are shown in Table 3.

(d) Solvolysis of (1) and (2) in CF₃CH₂OH. When a solution of (1) in CF₃CH₂OH was kept at 50 °C, the approximate extents of reaction at various times were: 15%, 45 min; 42%, 120 min; 57%, 180 min; and 71%, 270 min; thus the reaction was 50% complete in *ca*. 2.5 h. After 8 h the solvent was evaporated off, to give (Me₃Si)₂C(SiMe₂OCH₂CF₃)₂, m.p. 68 °C; $\delta_{\rm H}$ 0.22 (18 H, s, SiMe₃), 0.32 (12 H, s, SiMe₂), and 3.68—3.98 (4 H, q, OCH₂); $\delta_{\rm F}$ -68.3 p.p.m.; *m*/*z* 457 (57%, [*M* - Me]⁺), 373 (10, [*M* - OCH₂CF₃]⁺), 357 (20), 297 (53), 275 (25), 255 (60), and 73 (100). (These properties are identical to those of an authentic sample.)

When the procedure was repeated but in the presence of Et₃N (0.024 mmol), the reaction was *ca*. 50% complete in 2.4 h, and the product was VsiSiMe₂OCH₂CF₃, m.p. 135 °C; $\delta_{\rm H}$ 0.24 (18 H, s, SiMe₃), 0.30 (6 H, s, SiMe₂), 0.35 (6 H, s, SiMe₂O), 3.88— 4.22 (2 H, q, OCH₂), and 5.5—6.6 (3 H, m, CH=CH₂); $\delta_{\rm F}$ - 70.9 p.p.m. (t); *m/z* 385 (100%, [*M* - Me]⁺), 373 (20, [*M* - CH=CH₂]⁺), 305 (85), 301 (20, [*M* - OCH₂CF₃]⁺), 243 (20), 187 (30), 213 (100, [*M* - Me₃SiOCH₂CF₃ - Me]⁺), 201 (70, [*M* - CH₂=CHMe₂SiOCH₂CF₃ - Me]⁺), 155 (20), 129 (30), 85 (20), 73 (100), and 59 (20).

When (2) was used in place of (1) in the first procedure described above (*i.e.* in the absence of Et_3N), there was no detectable reaction in 5 days.

(e) Solvolysis of (1) and (2) in CF_3CO_2H . When a solution of (1) in CF_3CO_2H was kept at 50 °C the final product was $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$, but during the reaction VsiSi- $Me_2O_2CCF_3$ appeared and then disappeared. The ratios of (1), the intermediate, and the final product, respectively, at various times were: 5 min, 65:15:20; 10 min, 45:20:35; 15 min, 20:25:55; and 20 min, 10:25:65. After 50 min only the bis(trifluoroacetate) was present.

When the procedure was repeated but in the presence of one equivalent of Et_3N , the final product was $VsiSiMe_2O_2CCF_3$, and the half-life was *ca*. 8 min. The reaction of (2) with CF_3CO_2H alone gave a good first-order plot with a half-life of *ca*. 235 h.

(2) Reactions with Silver Salts.—Usually a mixture of the relevant organosilicon halide (0.25 mmol) with the appropriate silver salt (0.25 mmol) in CH_2Cl_2 (20 cm³) was stirred at room temperature (ca. 21 °C). Samples were removed at intervals and filtered through cotton wool into an n.m.r. tube, the ¹H n.m.r. spectra were recorded, and the ratio of starting material to product was estimated from the heights of the Me₃Si peaks.

In some specified cases, a mixture of (1) and (2) was used with a deficiency of the silver salt.

(a) A mixture of (1) (0.25 mmol), (2) (0.25 mmol), and $AgO_3SC_6H_4Me$ -p (0.25 mmol) was used. After 3 min ca. 40% of (1) had been converted into $VsiSiMe_2O_3SC_6H_4Me$ -p, after 13 min ca. 60%, and after 27 min ca. 85%. After 45 min only $VsiSiMe_2O_3SC_6H_4Me$ -p and unchanged (2) were present in solution.

(b) When a mixture of (2) (0.25 mmol) and $AgO_3SC_6H_4Me$ -p was used, the reaction was half-complete in ca. 15 h.

(c) When a mixture of (1) (0.25 mmol), VsiSiMe₂Br (0.25 mmol), and AgO₃SC₆H₄Me-*p* (0.50 mmol) in CH₂Cl₂ (25 cm³) was used, after 3 min ca. 40% of (1) and no detectable amount of VsiSiMe₂Br had reacted. After 60 min all of (1) and ca. 55% of VsiSiMe₂Br had reacted, and after 240 min only VsiSiMe₂-O₃SC₆H₄Me-*p* was present in solution.

(d) No reaction occurred under similar conditions between $TsiSiMe_2Br$ (0.25 mmol) and $AgO_3SC_6H_4Me$ -p (0.25 mmol) during 48 h.

(e) When a mixture of (1) (0.25 mmol), (2) (0.25 mol), AgSCN (0.50 mmol), and CH_2Cl_2 was used, no detectable reaction of (2) took place, and the approximate amounts of (1) which had reacted at various times were: 8 min, 25%; 20 min, 50%; 34 min,

70%; 55 min, 85%; 70 min, 90%; and 120 min, 100%. After 48 h only VsiSiMe₂NCS and TsiSiMe₂I were present in solution.

(f) In the reaction of (1) (0.25 mmol) with AgO_2CMe (0.25 mmol) in CH_2Cl_2 (25 cm³) the approximate extents of conversion of (1) into VsiSiMe_2O_2CMe at various times were: 4 min, 30%; 9 min, 45%; 16 min, 60%; 30 min. 80%; and 80 min, 100%.

With (2) under similar conditions the corresponding results were: 8 h, 20%; 17 h, 35%; 25 h, 45%; 40 h, 55%; and 80 h, 80%.

(3) Reactions with Alkali Metal Salts.—Reactions were monitored by ¹H n.m.r. spectroscopy, the relative heights of corresponding peaks (usually those from Me₃Si but sometimes those from Me₂Si protons) in starting materials and products being used as the measure of the extent of reaction. Good firstorder plots were obtained in all cases.

Reactions in MeCN.—Solutions were kept in a bath at 60 °C, and samples were removed at various times and rapidly evaporated under reduced pressure. The residue was extracted with CCl₄ containing acetone (5%) as reference and the ¹H n.m.r. spectrum of the extract was recorded.

(a) In the reaction of (1) (0.125 mol) with 0.50M-KSCN (0.50 mmol) in MeCN (10 cm³) the approximate extents of conversion into VsiSiMe₂NCS at various times were: 10 min, 15%; 20 min, 22%; 40 min, 40%; 60 min, 50%; 95 min, 65%; 106 min, 70%; and 150 min, 82%. The value of t_4 was *ca*. 61 min.

(b) When (2) was used in the procedure described under (a) the corresponding data were: 20 min, 20%; 28 min, 27%; 40 min, 35%; 50 min, 40%; 75 min, 52%; 90 min, 60%; 106 min, 68%; and 150 min, 80%. The value of $t_{\frac{1}{2}}$ was *ca*. 66 min.

(c) The procedure described under (a) but with 0.10M-KSCN resulted in a good first-order plot with $t_{\frac{1}{2}}$ ca. 30 min, and with 0.20M-KSCN $t_{\frac{1}{4}}$ was ca. 15.5 min.

(d) When (1) and 2.0M-KOCN in MeCN were used in the procedure described above, $t_{\frac{1}{2}}$ for the conversion into Vsi-SiMe₂NCO was ca. 18 h. In a similar procedure but with (2), $t_{\frac{1}{2}}$ was ca. 21 h.

(e) When (1) and 2.0M-NaN₃ were used $t_{\frac{1}{2}}$ was ca. 11 h. For (2), $t_{\frac{1}{2}}$ was ca. 13 h.

Reactions in MeOH.—The organosilane (0.023 mmol) was dissolved in a drop of CCl_4 (ca. 0.01 cm³) in an n.m.r. tube and an 0.25M-solution (1 cm³) of the salt in MeOH was added. The tube was capped, shaken, kept in a bath at 60 °C, and transferred at intervals to the n.m.r. spectrometer. Good first-order plots were obtained in all cases up to >80% completion of the reaction.

(a) For reaction of (1) or (2) with NaN₃, values of $t_{\frac{1}{2}}$ were 5.5 and 6.5 h, respectively. The products were exclusively the corresponding azides.

(b) In the reaction of (1) with CsF, the fluoride VsiSiMe₂F and the methoxide VsiSiMe₂OMe were formed, and their ratio during the reaction averaged ca. 10:1. The value of t_{\pm} for disappearance of (1) was ca. 7 h. When (2) was used the ratio of fluoride to methoxide was ca. 18:1, and the corresponding value of t_{\pm} was ca. 9 h.

(c) In the reaction of VsiSiMe₂Br with CsF the ratio of methoxide to fluoride product was *ca.* 12:1, and t_{\pm} for disappearance of the bromide was *ca.* 14 h. In a similar procedure with TsiSiMe₂Br the corresponding ratio was *ca.* 17:1 and t_{\pm} *ca.* 24 h.

(d) In the reactions of VsiSiMe₂Cl and TsiSiMe₂Cl with CsF, the corresponding fluorides were the only products, and the values of t_4 were 29 and 35 h, respectively.

Acknowledgements

We thank the S.E.R.C. for support, the Commonwealth Scholarship Commission for the award of a scholarship to G. A. A., Mr. A. M. Greenway for the mass spectra, and the Dow Corning Co. Ltd., for gifts of organosilicon chemicals.

References

- 1 C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet. Chem., 1980, 188, 179.
- 2 C. Eaborn, J. Organomet. Chem., 1982, 239, 93, and in 'Organosilicon and Bioorganosilicon Chemistry,' Elllis Horwood, Chichester, 1985, pp. 123-130.
- 3 S. A. I. Al-Shali, C. Eaborn, F. A. Fattah, and S. T. Najim, J. Chem. Soc., Chem. Commun., 1984, 318.
- 4 C. Eaborn and D. E. Reed, J. Chem. Soc., Chem. Commun., 1983, 495. 5 C. Eaborn, P. D. Lickiss, S. T. Najim, and M. N. Romanelli, J. Chem.
- Soc., Chem. Commun., 1985, 1754.
 6 J. J. Eisch, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson F. G. A. Stone and F. W. Abel. Perramon London 1982.
- Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, London, 1982, vol. 1, p. 566.
 7 G. A. Jucke and C. Enbern, J. Chem. Soc. Chem. Commun. 1986.
- 7 G. A. Ayoko and C. Eaborn, J. Chem. Soc., Chem. Commun., 1986, 630.
- 8 C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1983, 827.
- 9 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Walton, J. Organomet. Chem., 1979, 178, 75.
- 10 C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1983, 1390.
- 11 C. Eaborn and A. I. Mansour, J. Chem. Soc., Perkin Trans. 2, 1985, 729.
- 12 C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1984, 870.
- 13 R. I. Damja, C. Eaborn, and W.-C. Sham, J. Organomet. Chem., 1985, 291, 25.
- 14 C. Eaborn and A. I. Mansour, J. Organomet. Chem., 1983, 254, 273.
- 15 Y. Y. El-Kaddar, unpublished work.
- 16 C. Eaborn and A. K. Saxena, J. Organomet. Chem., 1984, 271, 33.
- 17 C. Eaborn and F. M. S. Mahmoud, J. Chem. Soc., Perkin Trans. 2, 1981, 1309.
- 18 D. E. Reed, D. Phil. Thesis, University of Sussex, 1982.
- 19 C. Eaborn and M. N. Romanelli, J. Chem. Soc., Chem. Commun., 1984, 1616.
- 20 A. I. Al-Wassil, C. Eaborn, and M. N. Romanelli, J. Chem. Soc., Perkin Trans. 2, 1986, 1363.
- 21 C. Eaborn, P. D. Lickiss, S. T. Najim, and M. N. Romanelli, J. Organomet. Chem., 1986, 315, C5.
- 22 (a) C. Eaborn, P. D. Lickiss, G. Marquina-Chidsey, and E. Y. Thorli, J. Chem. Soc., Chem. Commun., 1982, 1326; (b) C. Eaborn, Y. Y. El-Kaddar, and P. D. Lickiss, *ibid.*, 1983, 1450.
- 23 P. D. Lickiss, unpublished work.
- 24 G. A. Ayoko and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1986, 1289.
- 25 S. Winstein, in 'Carbonium Ions' (G. Olah and P.v.R. Schleyer, eds.), vol. 3, Wiley-Interscience, New York, 1972, chpt. 22; P. R. Story and B. J. Clark, Jr., *ibid.* Chpt. 23.
- 26 See, e.g., K. B. Wiberg, B. Andes, Jr., and A. J. Ashe, III, ref. 25, pp. 1338—1341; T. H. Lowry and K. S. Richardson, 'Mechanism and Theory in Organic Chemistry,' 2nd Edn., Harper and Row, New York, 1981, pp. 403---405.
- 27 C. Eaborn, P. D. Lickiss, and N. A. Ramadan, J. Chem. Soc., Perkin Trans. 2, 1984, 267.
- 28 A. D. Taylor, D. Phil. Thesis, University of Sussex, 1986.
- 29 R. Damrauer, C. Eaborn, D. A. R. Happer, and A. I. Mansour, J. Chem. Soc., Chem. Commun., 1983, 348.
- 30 C. Eaborn, D. A. R. Happer, and K. D. Safa, J. Organomet. Chem., 1980, 191, 355.
- 31 W. R. Bamford and B. C. Pant, J. Chem. Soc. C, 1967, 1470.
- 32 S. Maziny, J. Chem. Soc. A, 1970, 1641.
- 33 C. Eaborn and D. E. Reed, J. Chem. Soc., Perkin Trans. 2, 1985, 1687.

Received 8th September 1986; Paper 6/1805